GEOMETRIC LOGIC AS A SPECIFICATION LANGUAGE

STEVEN VICKERS
Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ, United Kingdom

E-mail: sjv@doc.ic.ac.uk

ABSTRACT

The “observational content” of geometric logic is discussed and it i1s proposed
that geometric logic is an appropriate basis for a Z-like specification language
in which schemas are used as geometric theory presentations.

A descriptional mechanism of “schema entailment”, generalizing type con-
structions and logical entailment, is defined and investigated in some examples,
and 1s also used in defining schema morphisms which are discussed briefly in
connection with schema connectives, and with specifying and implementing op-
erations.

1 Introduction

In Vickers [10, 9] it was suggested rather briefly that an “observational con-
tent” of geometric logic made it a good candidate as a logic appropriate to
specification. The aim of this paper is to amplify those remarks.

What is Specification?

Fundamentally, a specification must attempt to capture the relation between
the computer system and the real world, for that relation is what gives meaning
to the electronic bit manipulations. In the words of Maibaum and Turski [§],
the specification binds together a program and its application. Of course, the
real world is ultimately informal, so that no formal system can ever truly bind
to it. Nonetheless, in writing our specification we should attempt to formalize
as best we can the application domain, that is to say those aspects of the real
world that are relevant to the meaning of the computer system. Thus logically,
though not teleologically, the specification binds together two formal systems:
a formal theory of our view of the real world, and the formal theory of the
computers.

What Sort of Logic?

Having accepted that our specification is to include an attempt at formalizing
the application domain, we should try to use a logic that is sympathetic to the
real world and does not try to foist on it artifacts of the formalism. To illustrate
what I mean, consider the formula

dax e (LivesIn(x, LochNess) A Monster(z))

Assuming that the predicates Livesin and Monster are interpreted approxi-
mately in accordance with the corresponding English words, we can well imag-
ine under what conditions we could know that the assertion is true (Figure 1).
To be sure, this would take a lot of luck, serendipity or Divine Grace, but no
particular effort — in fact we can imagine others putting much time and re-
sources into a vain attempt (Figure 2) to repeat our observation. And after our
revelation we at least can be in no doubt about the truth of the assertion.

Figure 1 Figure 2

But now consider its formal negation,
YV o (= LivesIn(x, LochNess) V = Monster(z))

There is no conceivable revelation of the truth of this assertion, and to check
it by personal effort is quite impracticable. On the face of it we’d have to look
at every thing and check that either it doesn’t live in Loch Ness or that it’s not
a monster; and even more economical approaches such as draining the Loch and
sifting through the muck at the bottom would be too difficult in practice.

The moral is that negation is not the inoffensive notion that classical logic
would make it appear, for it can completely change the character of an assertion
to which it is applied. In fact we shall work with a positive logic, without
negation.

One consequence of this is that it is much less meaningful to ask of an
assertion, “Is this true or false?” Instead, one should ask, “What truth can I
find in this?”

Observational Classes

To give a structure for a many-sorted classical theory, one interpretes each
sort as a set (its carrier) and each predicate — indeed, each formula — as a
relation, a subset of the appropriate product of carriers (corresponding to the
free variables). Hence formulae are represented as sets.

That is a mathematical semantics, but it is intended to indicate a real world
(informal) meaning in that set-theoretic operations are considered in themselves
to have a clear meaning in the real world: set comprehension is “gathering things
together” (though one might question how meaningful this is for infinite sets).

We have no ready-made mathematical model for our observational notions,
but let us at least briefly recall the real world intuitions as set out in [10]. A
formula is to be interpreted as an “observational class” which comprises two
rules:

e How to know when you have “apprehended” an element of the class —
i.e. observed its existence and got a hold on it for comparison with other
elements.

e How to know when you have observed that two apprehended elements are
equal.

(The slightly fussy “how to know when you have.” is intended to stress the
serendipitous nature of observations that has already been remarked on.)

I shouldn’t pretend that this account of observational classes arises fully
formed out of a fundamental analysis of the nature of observations — on the
contrary, it is undeniably influenced by the existence of geometric logic with its
known nice mathematics. One can certainly question some of the observational
assumptions. For instance, do we really always know how to observe equality?
How do you apprehend a photon in such a way that you can observe its equality
with another photon? Why shouldn’t inequality be fundamental? Nonetheless,
I believe the principles described here lead to specifications that are at least
better adapted to observational reality than those based on classical logic (or
intuitionistic logic, for that matter).

Schemas as Theory Presentations

In a theory presentation (which will be a schema in the Z-like language we shall
propose) the application domain, our view of the world, is to be described as
follows.

e An extralogical vocabulary of sorts (base types), predicates and functions
represents the observational classes that we believe (informally) exist in
the application domain. Derived formulae will represent derived observa-
tional classes. This will be described more fully in the next section, but
remember that the connectives are not always those of classical logic — no
negation, for instance.

o A set of axioms represents our background assumptions or hypotheses
about the real world. An axiom is not itself a formula (observational
class), but compares two formulae by asserting that if one observation is
made, then another is also possible.

As an example, the application domain for a genealogy database clearly
includes notions of people and parenthood. We might start to present their
theory as a schema

_ People[X]
ma,pa: X — X
#: P(X x X)

T # r =>,.x false
true =, ,x t=yVaFy
ma(x) = pa(x) =>,.x false
Nizi(zi = ma(xi-1) V 2 = pa(z;_1))
A (2 = ma(x,) V 20 = pa(,)) =>u....00:x false

o “People” is the name of the theory.

e X is the base type whose elements are people; it appears in the position
that in Z is used for “generic types”. Hence our account explains generic
types as sorts in a many-sorted theory.

o The extralogical vocabulary appears in the upper part of the schema,
which Z calls the “signature”, while the axioms appears in the lower,
“predicate” part. However, for us a “predicate” will be a predicate symbol
(like #) in the vocabulary.

e We can observe when two people are different people, but since inequality
(unlike equality) is not part of the logic it must be supplied as an ex-
tralogical ingredient of the theory, together with axioms (the first two) to
characterize it as the complement of equality.

A type that is equipped with inequality as well as equality is said to be
decidable.

e ma and pa are to be total functions. Note that they could be equiva-
lently presented as binary relations with axioms for totality and single-
valuedness:

‘ ma : P(X x X)
true =, ,.x Jy ® ma(z,y)
ma(z,y) N ma(z,y') =, ,.x y =1

and similarly for pa.

e People here are intended to be real people, not representations in the
database — the database will be described on top of the theory of real
people (as a schema that includes People).

e The third and fourth axioms are included for illustration — they are not
intended to be complete. The third says that nobody can be both a mother
and a father, while the fourth — a countable set of axioms, indexed by
n > 1 — says that no one can be their own ancestor.

Actually, we have already now encountered mathematical difficulties. Clearly
the database is finite, and we cannot expect ma and pa to restrict to total func-
tions on the database — we can’t expect to know the parents of everyone. How-
ever, mathematically speaking, the axiom of non-self-ancestrality is sufficient to
rule out any finite models (except the empty set) and that should include the
set of real-world people — surely that is finite? Certainly we can give undoubted
upper bounds — a trillion trillion, say — for the number of people to date (and to
interpret ma and pa we don’t need to consider future people), though perhaps
it’s unreasonable to expect a 1-1 function from the set of people to the set of
the first trillion trillion natural numbers. One might think that the theory must
be modified in consequence — perhaps ma and pa are not quite total, everyone
having a mother and a father except for Adam and Eve. Yet I cannot believe
that this makes better observational sense than the theory given.

A sharp question is the following: Can we accept that there is a 1-1 function
from the natural numbers N to the set of people, defined by n +— ma”(S..J. Vickers)?
It is difficult to see how experience could conflict with this idea. Allowing for

30 years per generation, reason would suggest that ma™(S.J. Vickers) is a well-
defined person from the classical world, yet the chances of ever identifying her
are negligible even for this small value of n. Perhaps one can argue from this
example that the world is not logically classical.

We shall use the term schema synonymously with (geometric) theory presen-
tation. Of course, this is tendentious. Z-schemas are not generally understood
as theory presentations, and in fact some of the uses for schemas in Z are not
really compatible with this idea. We shall not use the standard Z-terminology
for components of schemas:

VA Here
generic type base type
signature functions, constants and predicates

generic types + signature vocabulary
predicate axioms
name with power set type predicate

2 Geometric Theories

The logic we shall use is geometric logic, and our Z-like specification language
will be called, provisionally, GeoZ.

An introduction to the basic notions of geometric logic is given in [9]. Let
us now recall the definitions and explore the application to specifications.

The Basic Form of Presentations

The basic definition of a geometric theory is as follows: it comprises —
e base types (or sorts)
e function and predicate symbols

® axioms

The base types and function and predicate symbols should not cause any
surprise to anyone familiar with first-order many-sorted logic. Each function or
predicate has an arity describing the types of its arguments and (for a function)
that of its result, so arities take the form P(X; x --- x X,,) (for predicates) or
Xy x -+ x X, — X (for functions) where the X;’s and X are types. If

P:P(Xy x---xX,) and f:Xix--xX,—-X

and if each ¢; is a well-formed term of type X, then P(t,...,t,) is a well-
formed formula and f(t,...,t,) is a well-formed term, of type X. Note the
nullary cases, n = 0: then P is a propositional symbol and f is a constant.

Examples:

less : P(X x X)

snowing : P(1) (a propositional symbol)
plus : X x X —- X
zero : X (a constant — could write zero: 1 — X)

In Z, the arities P(X; x --- x X)) and X3 x -+ x X, — X are considered
to be types. This is not the case in GeoZ, where there is a firm distinction
between types and arities. This is enforced mathematically, but the intuition
is that types represent observational classes whereas arities need not: there is
no general prescription for apprehending functions or possibly infinite subsets,
nor for observing (in a finite way) equality between them. Since we haven’t
described any type constructions yet (though they will come), the types X; and
X above must be base types in the basic form of presentation described here.

When we come to the axioms, the geometric logic begins to make a big
difference. A geometric axiom has the form ¢ =g 1 (¢ kg 1 in [9]) where

e S is a finite set of typed variables

e ¢ and v are geometric formulae whose free variables are all in §.

Geometric formulae are constructed in an unsurprising way except that a
particular set of logical connectives is used. First, terms are constructed from
variables (typed) and function symbols in the usual way. Then formulae ¢ are
of the form

pu=t =x bt | Plt,....t,) | false | true | gAY | ¢V | Vieroi | Tz : X 00

e In the equation t;, =x 5, t; and ¢, must be of type X (which in general
can safely be omitted).

e In P(t,...,t,), the types of the ¢;’s must conform with the arity of P.
o In \/;c;¢i, I can be any indexing set, possibly infinite.

o Despite the possibility of infinite disjunctions, a geometric formula must
have only finitely many free variables. However, it can have infinitely
many bound ones.

To illustrate quickly the observational content of the geometric connectives,
consider 3z : X o ¢(x,y) where y : Y (X and Y are types, not arities). ¢ is
to represent an observational subclass of X x Y: to apprehend an element of it
you must apprehend elements ¢ and y of X and Y, and make some additional
observation to correspond to (z, y) being in ¢. To observe that (z, y) = (2,),

/

you must observe that ¢+ = 2’ and y = ¢'. Now Jz : X e ¢(z,y) is to
represent an observational subclass of Y. To apprehend an element of it, you
must apprehend a pair (z, y) in ¢, and to observe that (z, y) = (2/, y') you must
observe that y = y’ — so the only difference between ¢(z, y) and Iz : X o ¢(z, y)
lies in the equality.

Now consider an axiom ¢ =y ¥ where X = {21, 29,...,2,}, and each ;
has type X;. ¢ and) then represent observational subclasses of II; X; (this is the
case even when not all the z;’s appear explicitly in ¢ or ¢ as free variables) and
the axiom asserts that the subclass for ¢ is contained in that for : whenever
you have apprehended elements x; and made the extra observations for ¢, then
the extra observations for ¢ are also possible (even if you haven’t made them
vet). The axiom is not itself observable but asserts a hypothesis about the way
the observational classes relate.

Extensions to the Logic

Plainly the licence to use infinitary disjunctions is a doubtful privilege. You
might expect in practice to be limited to finitary disjunctions by rather mun-
dane considerations such as availability of paper (unless a formal set theory is
built into the logic, and we’re not going to do that). Unfortunately, a restriction
to finitary disjunctions is too restrictive for practical purposes. However, there
is the possibility of using finitary notation for fragments of the infinitary logic,
and we shall use this technique extensively. It’s important to understand this
correctly. GeoZ is not defined by a particular collection of finitary constructions,
but by infinitary constructions for which we shall present some finitary approx-
imations that can be extended by “expert” users. (Non-expert users would use
standard packages.)

That’s rather vague. We shall see more specifically two regions where ex-
tensions can be made: in the type system and in the logical connectives. An
important principle that applies to both is that they should not increase the
expressive power of the infinitary logic: the theories that can be presented using
the extensions should be already presentable using the infinitary logic.

Extended Types

We have already said very firmly that P and — are used to construct arities, and
not types. For solid mathematical reasons, they cannot be considered geometric
type constructors. However, there are plenty of useful type constructors that
are geometric. One is Cartesian product, which we have already seen used in
arities. Other ones are disjoint union (coproduct), finite power sets, and list
types. We shall give a fuller list later.

The fundamental rule is as follows: a type construction can be considered
geometric if it can be characterized uniquely up to isomorphism using geometric
axioms.

To see how this works, consider Cartesian products. Let X and Y be types
in some theory S, and suppose we extend S to a theory T by adding —

e another base type 7
o functions 7y : 7/ —= X and my: 7/ — Y

® axioms —

true = ,.x. oy 32 Z 0 (wi(2) = Am2(2) = y)
m(z) =m(Z) A ma(z) =me(2) =,z 2 = 2

Given any model of S, we can make a model of T' by interpreting 7 as X x Y
and 7, and 7 as the projection functions. But actually this is “essentially” (i.e.
up to isomorphism) forced on us: in any model of T', 7 has to be isomorphic
to X x Y and 7wy and 7, have to be isomorphic to the projections. Hence the
models of T are essentially the same as those of S, and the two theories are
equivalent. Other constructions that can be characterized geometrically in this
way include disjoint unions (coproducts; even infinitary coproducts), colimits,
finite limits and free algebras. Let us give a provisional, incomplete syntax of
types X and arities a:

X

(a4

(base type) | X x X | XWX |FX |seq X |o]---
X [B(X) | X = X

W is disjoint union, I is finite power set (free semilattice) and seq X is a list
type (finite lists over X — free monoid). We have simplified arities by using the
fact that Cartesian product is a type constructor.

The ¢ is a geometric formula. If its free variables wy,...,z, have types
Xi,...,X,, then ¢ is a subtype of Xy x---x X,,. There are various naughtinesses
here. We have assumed that x is associative and omitted brackets in Xj x -+ - x
X,,, but of course it is actually associative only up to isomorphism. Also, there
is no reason why there should be a canonical order on the free variables of ¢,
so we have even in effect assumed that x is commutative. Finally, it would
actually be better to allow ¢ to have “unused” free variables (as happens in an
axiom ¢ =y 1 — some of the variables in X may be unused in ¢ and). So
all in all there is some formal imprecision in our use of formulas as types, but
in practice we shall try not to leave any serious unresolved ambiguities.

3 Schema Entailment

We propose a particular definitional method based on the idea of two theories
having “essentially the same models”. It subsumes derived types, derived terms
and derived axioms (i.e. logical consequences).

Let S be a (geometric) schema, and let T' be an extension for S: by this
we mean that it comprises base types, vocabulary and axioms that become a
schema when § is included. Or, to put it another way, 7' is understood in a
context that implicitly includes S, so that for instance the arities in T may
refer back to S. We write S 4+ T for the schema formed by including S in T' (or
extending S by T'), a superschema of S.

Clearly every model of S+ T yields a model of S by reduction. We say that
T definitionally extends S, and write S = T, a schema entailment, iff reduction
gives an equivalence between models of S + T and models of S —so S + T has
essentially the same models as 5. (Remember that “essentially” here means
“up to isomorphism”.) Hence for any model of S there is one and essentially
only one way of interpreting the extra ingredients of T' in it. (We also say that
S+ T is an equivalence superschema of S.)

Eramples

1. Suppose T contains axioms only:

T

axioms

Then S F T iff the axioms in T are consequences of the theory S. (Oth-
erwise the axioms of T are proper constraints on S that are not satisfied
by every model of S. Hence S + T has fewer models.)

2. Extensions by pure definition are easily seen to be definitional in the sense
just given. For instance,

People[X] I_ grandma : X — X

true =,.x grandma(z) = ma(ma(z))

People[X] -

fullsib : P(X x X)

fullsib(z, y)<=; 4.x
ma(x) = ma(y) A pa(z) = pa(y)

3. We can use a similar technique for less direct definitions. For instance, here
we define a function from its graph, a total, single-valued relation, thus
gaining access to the term-forming mechanisms in the syntax of functions.

X, V]
P:P(X xY)

true = ,.x

Jy:Y e Plz,y)
Pz, y) N P(z,y')
:>x:X; yoyY Y = y/

I_ _f:X—>Y

Yy :f($)<:>x:X;y:YP($7 y)

Here is another example to show how a predicate can be considered as a

type.

_[X]

—[Y]
|_ i:Y — X

i(y) = i(y)=yyvy =19

Pr)e=,xdy: Y ez =i(y)

4. Definitional extensions are also used to characterize derived types, for

instance (a):

_[Z[=2X4¥Y]]
nw:X—Z7Z
Y —= 7

I_ () = 12(y) =>u.x,; v false

]

u@)=u@)=,xe=2a

w(y) =wly) =y y=1v
true =r,.z dz: X 0 u =y (x)
V3y: Y eu=1(y)

This characterizes — it turns out — binary coproducts; in fact, more pre-
cisely we have (b):

XY, W] —

[X oW I— h:XwY —- W
g:Y — W true =r,.x h(u(z)) = f(2)
true =y h(e2(y)) = g(2)

These schema entailments are actually serving two purposes. Semantically,
they assert essentially unique existence, while syntactically they introduce no-
tation. For example, the notation W for disjoint union, introduced in 4(a), is
then used in 4(b). By this use, the conclusion of 4(a) is implicitly included in
that of 4(b).

By no means all of the examples given are intended to set up notation as
well as assert essentially unique existence. To exploit (3), for instance, if we are
given a total, single-valued relation P then its corresponding function would
not always be called f. Rather, we should say something along the lines of “let
g45 : X — Y be the unique function satisfying y = ¢45(2)<=P(z,y)” (or,
“let g45 : X — Y be the function whose graph is P).

Hence further work is needed to clarify the way that definitional extensions
are used syntactically.

At the level of syntax, there is a certain analogy with type theory. That
allows judgements such as “X is a type”, “f is a term of type X7 “P is a
proposition”, and “P is true”, and its syntaxr provides rules under which in a
given context certain syntactic formations yield sound judgements. For instance,

X type, Y type X W Y type
X type, Y type,z: X Fy(z): XW Y
X type, Y type,z: X,y Y, u(x) = a(y) - false

By grouping together the right-hand sides of such entailments, the schema
entailment is able to elevate these syntactic rules into assertions with semantic
content.

Free Algebras

In [9] finite power sets are characterized in a way that is equivalent to the
following definitional extension:

_ [Z[=FX]]
D7
{{}: X =7
U:ZxZ4—7Z

true =g 1.2 SUT =TUS

I_ true —=g5., SUT =9

true =45.7 SUS =5

true =5 1,0.7
SU(Tut)=(SuT)uU

true =-g5.7 \/neNﬂxl,...,xn .
S=A{r,...,0.}

{zg, ooz ULy, oo U ={uts e oy Un)
=1 tmoytsen: X N1 Vje1%i = Uj

T

(Obviously from the syntactic point of view, this leaves a lot to be desired
because of the infinities. Let us leave aside that issue for the moment.)

A crucial feature of this definition, which can be proved from the schema
entailment given above, though it is not at all obvious, is that F X is the free
semilattice over X: in other words, we have

— [X, M]
e MxM—-=M
1: M —
. g:FX - M
true — true — S TFX
w,v,w:M g(S U T) = g(S) . g(T)
v lvrw)=(uro) v true = ¢(@) =1
true —=, .M U- V=0 U
’ t v =
trie =, .y u-1=u re — ;. x g({$}) f(f)

true = ,.pp u-u = u

In fact, the freeness property is already enough to characterize F X up to
isomorphism. Hence the infinitary part of the first entailment, though necessary
to ensure a definitional extension, is not needed for subsequent working. Given
the two entailments together, we could work just as well if the first had its last
two axioms hidden from us.

This phenomenon is rather general. For any finitary algebraic theory, the free
algebras can be characterized by definitional extensions. However, the details
of how this is done are generally boring. They rely on using infinite (though

countable) disjunctions to capture all possible term formations and all possible
equations between terms. In practice it suffices to rely on the general theory
to say that the definitional extension is possible and go on to the universal

property.

Bounded Universal Quantification

Hodges [6] pointed out the specificational significance of universal quantification
bounded over finite sets, in the form Yo € S o P(xz). These do not suffer from
the observational problems of unbounded (or, rather, type-bounded) universal
quantification, for to observe Va € S o P(x) where S = {z,...,2,}, one simply
has to observe P(azy) A ... A P(xz,). In fact, such universal quantification is
geometric: it can be characterized by a definitional extension (for simplicity we
ignore other arguments of P).

Vee_eoPz):PFX

[X]— I true =V € g o P(x)

Vo e {n} e Pla)=4.xPlx)

VeeSUT e P(=T)<:>S,T:]FX
VeeSePa)ANVreTePx)

Proof P is a function from X to (), the set of truth values. Since we have
to work constructively, there may be truth values other than the classical true
and false; nonetheless, () has operations corresponding to the connectives of
intuitionistic logic, and in particular it’s a semilattice under conjunction. Hence
by the universal property of F X we get a homomorphism from F X to), and
this corresponds to the predicate Vo € _e P(z) : PF X.

If we have V& € S o P(z) and also 2y € S (which means S = {2} U S, then
we can deduce P(xp) — an elimination rule for V. On the other hand, we also
have the usual introduction rule in the form

PiPX -
S:FX

true =V € 5 o P(x)

Proof Say S = {#,...,2,} = {m}U...U{x,}. Then for each i we have
P(x;), hence V& € {2;} ® P(x), and it follows that V& € S e P(z).

The introduction and elimination rules show that V is a true universal quan-
tification.

4 Morphisms of Schemas

Suppose S and T are schemas, and we’d like to describe a transformation from
models of S into models of T'. One approach is to take a “generic” model of 5,
one which has no properties at all except that it is a model of 5, and show how
to construct a model of T from it. Then what could be done for the generic
model can also be done for any specific model, thus giving our transformation.
This is perfectly common in mathematics. For instance in 2 + 7z + 12, z is a
generic number for which any specific number can be substituted; and M is a
generic monoid in, “Let M be a monoid. Then M°? is a monoid with the same
elements and unit, but for which multiplication is defined by « <pror y = y-py 2.7
It also lies behind V-introduction in logic: to prove Va o (P(z) = Q(z)) you
take a generic ¢ satisfying P(¢) (i.e. it has no properties except P(¢)) and prove
Q(c) for it.

Classically there is no generic model. For any property ¢, any classical model
must satisfy either ¢ or = ¢ and so (unless one of these is a consequence of)
is not generic — a generic model would lack both the properties ¢ and — ¢.

Geometrically, however, we can find a generic model by changing our set
theory: we imagine a set theory in which in addition to the ordinary sets we
also have “sets” corresponding to the vocabulary of S, and about which nothing
is known except that they satisfy the axioms of S. These constitute the generic
model of 5. We also take everything that can be derived from these by geometric
type constructors. This gives a category S[S] of derived types. Its objects,
subobjects and morphisms are the sorts, predicates and functions that can be
characterized in definitional extensions of S, and we call it the G-frame presented
by S. (G-frame here is what in Vickers [9] is called a giraud frame; but the
abbreviation allows us to honour Grothendieck as well. Ordinarily it is called
the classifying topos for S, but, as discussed in [9], we reserve the word topos
for different usage.)

Now to construct a model of T' from the generic model of S is to construct a
model of 7" in S[S]. Hence the vocabulary ingredients of 7', and the axioms too,
must be interpreted as things that can be characterized in definitional extensions
of S. By putting them together, we find a single equivalence superschema S’
of S into which T can be translated very literally — base types for base types,
symbols for symbols, axioms for axioms.

We have now arrived at our definition of schema morphism from S to T': an

equivalence superschema S’ of S, and a literal translation from T to S’. Apart
from some renaming, 7' can be considered a subschema of S’.

(Experts will understand that this is equivalent to a geometric morphism
between classifying toposes: from [S] to [T]. However, it is also evidently
not the whole story, because we should also define when two morphisms are
equivalent, or, more generally, what is a 2-cell (natural transformation) between
morphisms.)

A consequence of this discussion is that the task of defining geometric mor-
phisms is reduced to the task of knowing what extensions are definitional.

Note: Maibaum and Veloso [7], who worked on the idea of specification as
logical theory, define a morphism from S to 7' (an implementation of T in S)
to be a conservative extension S’ of S together with a translation from 7T to
S’. Our definitional extensions are on the face of it more restrictive (topos-
theoretically, a conservative extension corresponds to a surjective geometric
morphism from [S’] to [S], while a definitional extension corresponds to an
equivalence). However, it appears that not too much has been lost by this, for
the increased expressiveness of the infinitary disjunctions allows extensions to be
definitional geometrically where they could only be conservative classically. (An
example that is presented in more detail in [3] is the theory of natural numbers.)
In any case, conservative extensions in geometric logic are not well-behaved
(topos-theoretically, surjectivity of geometric morphisms is not preserved by
pullback), so we’d prefer not to rely on them.

In order to define composition, we need the following “weakening” property
for schema entailment:

Proposition 1 Let S C S’ be schemas (i.e. S is a subschema of S'), and
suppose S E T. Then also 5"+ T. O

Now consider two composable schema morphisms

S S’ r——1 U

Let T’, an equivalence superschema of T, be T+ T" with T+ T". Since S’
is (modulo renaming) a superschema of T, we have S’ F T so S"+ T" is an
equivalence superschema of S” and hence also of S, while it is also a superschema

of T+ T", i.e. T', and hence also of U: we have
§—=§ —=8§+ 1" —T—=U

This gives the product of the morphisms.

Having defined morphisms, an interesting possibility is that of using uni-
versal properties in the category of schemas to characterize theories, instead
of using syntactic construction of the schemas. This is a key to modularity in
specification, for it considers specifications not by their internal construction

but by their interface, how they relate to all other specifications (a universal
property). As a first example, let us prove —

Proposition 2 Schema conjunction is pullback.

Proof [sketch only, in view of the 2-categorical complications]

We haven’t defined schema conjunction, but it is just asin Z. It S and T' are
two schemas then S A T has all base types, functions, predicates and axioms of
S and T. This is done on the understanding that when a symbol is common to
S and T', it appears once only, as itself, in S A T — there is no attempt to make
two copies and distinguish between them. This results in a pullback rather than
a product.

Let U be the vocabulary common to S and 7. U is a subschema of both $
and T, and S and T are both subschemas of S A T, so we have a square —

SATL g
)
T U

g

We show that it is a pullback. Certainly, because all the morphisms cor-
respond to schema inclusions (no equivalence superschemas needed), we have
p; | = ¢; g. Now suppose we have p’ : V — S and ¢ : V — T with
p's f = ¢; g. We have equivalence superschemas Vi and V; of V such that
Vi is a superschema of S and V; a superschema of T'. By extending V; with
the extra ingredients used in V5, we can find an equivalence superschema V'
of V' that contains both V; and V;. Hence it also includes both S and T', and
hence also S = T, so we have a morphism h: V. — S A T such that h; p = p/,

hi g =4
Specifying Morphisms

A morphism from S to T says exactly how models of S are to be transformed
into models of T. However, one can imagine looser specifications. Consider a
schema extension S + 5] of the form

__[argument types]

arguments + results

preconditions postconditions

Although we haven’t included them, this pattern could easily include “result
types” (types calculated from the arguments), auxiliary values used to help

express the postconditions, and changing states (initial state as an argument,
final state as a result). Note that the postconditions can happily refer to the
arguments.

A translation from T to S + 5; in a sense specifies a morphism from S to
T, but doesn’t implement one — unless 5; is definitional over S. To implement
the specification is to give a further extension of S + 5 that’s definitional over

S.

5 Conclusions

The ideas presented here plainly have several radical differences from the con-
ventional view of Z as set out in Brien and Nicholls [1].

To mention first one of the less obvious, we have adopted rather fundamen-
tally the idea of specification as theory presentation ([8]). Hence, whatever you
think makes a good semantics of theories (and we have implicitly used categori-
cal logic and classifying toposes) should also be the semantics for specifications.
This provides an broad mathematical rationale for the semantic account.

A second difference from the Z standard is that we have rather glossed over
syntactic issues — not because we believe them unimportant, but because we
feel that good syntactic solutions are still needed for some of the problems of
expression. (We have already mentioned the question with schema entailments
of how best to have them fulfill two different roles: the assertion of essentially
unique existence, and the introduction of notation.) A fair proportion of the Z
standard is devoted to the syntactic issues of how the symbols introduced in a
schema fit in an environment of symbols already established. Indeed, it is rather
difficult there to tease out any meaning of specifications that does not depend
on the symbols. Very roughly, I believe the distinction is that in Z names are
global, and structures are seen globally as assigning carriers and so on to some of
the global names; whereas in GeoZ names and structures are understood locally
for a particular schema, and — ideally at least — names in different schemas are
related by explicit translations (though we have mentioned schema inclusion,
which has implicit translation determined by symbolic identity). Hence the
names in GeoZ have less primary importance. Related to this is the treatment
of generic types and values, though I must confess to not finding the Z standard
account very clear.

Finally, the most striking difference is the use of geometric logic. Since this
restricts the language quite considerably — in permitted type constructors and
the form of axioms (“schema predicates”) — one is justified in asking whether
the restrictions are acceptable, notwithstanding our rationale in terms of ob-
servations. Ultimately this can only be determined by putting the restricted
language into practice, but supporting evidence has come from the work in [6]

“I7”. Independently of the ideas of geometric logic, Hodges has been looking at
a similarly restricted logic with no negation or implication, nor universal quan-
tification except when bounded over finite sets. By examining the case studies
in [5], he has formed the opinion that the restricted logic suffices.

Even if the restrictions still allow us to write reasonable specifications, one
might yet ask what is the benefit of imposing them on ourselves. Again any
suggested benefit would have to be evaluated in practice, but our intention is
that in GeoZ it should be much harder to write meaningless specifications. For
instance, a postcondition for a procedure that says “flag = true iff all crows are
black”, with its universal quantification over an observationally infinite set, is
much less meaningful than one that says “flag = true iff all crows recorded in
the database are black”. In GeoZ we are forced to be aware that a set must be
finite if we are to store it in the computer and manipulate it.

Acknowledgements I should like to thank Mark Dawson, not only for the
many helpful discussions on how best to turn these ideas into real specification
language (some of the fruits of which are in [3]), but also for converting the paper
into TEX and for his general BTEX pertise. The ideas have also benefitted from
being aired in a discussion group involving Tom Maibaum and Jose Fiadeiro.

The work was assisted financially by the British Science and Engineering
Research Council under the “Foundational Structures in Computing Science”
research project at Imperial College.

References

[1] S. M. Brien and J. E. Nicholls. Z base standard. Technical Monograph PRG-
107, Oxford University Computing Laboratory, Wolfson Building, Parks Road,
Oxford, UK, November 1992. Accepted for ISO standardization, ISO/IEC
JTC1/SC22.

[2] G.L.Burn, S.J. Gay, and M.D. Ryan, editors. Theory and Formal Methods 1993:
Proceedings of the First Imperial College, Department of Computing, Workshop
on Theory and Formal Methods, Isle of Thorns Conference Centre, Chelwood
Gate, Sussex, UK, 29-31 March 1993. Springer-Verlag Workshops in Computer
Science.

[3] M. Dawson and S.J. Vickers. Towards a GeoZ toolkit. In Hankin et al. [4].

[4] C.L. Hankin, I.C. Mackie, and R. Nagarajan, editors. Theory and Formal Meth-
ods 1994: Proceedings of the Second Imperial College, Department of Computing,
Workshop on Theory and Formal Methods, Mgller Center, Cambridge, UK, 11—
14 September 1995. IC-Press.

[5] 1.J. Hayes, editor. Specification Case Studies. Series in Computer Science. Pren-
tice Hall International, 2nd edition, 1993.

[6] W. Hodges. Another semantics for Z, 1990.

[7] T. Maibaum, P. Veloso, and M. Sadler. Abstact specification theory. Technical
report, Department of Computing, Imperial College, 1991.

[8] W. Turski and T. Maibaum. The Specification of Computer Programs. Addison-
Wesley, 1987.

[9] S. J. Vickers. Geometric logic in computer science. In Burn et al. [2], pages
37-54.

[10] Steven J. Vickers. Geometric theories and databases. In Fourman, Johnstone,

and Pitts, editors, Applications of Categories in Computer Science, volume 177
of LMS Lecture Note Series, pages 288-314. Cambridge University Press, 1992.

