
GEOMETRIC LOGIC AS A SPECIFICATION LANGUAGESTEVEN VICKERSDepartment of Computing, Imperial College180 Queen's Gate, London SW7 2BZ, United KingdomE-mail: sjv@doc.ic.ac.ukABSTRACTThe \observational content" of geometric logic is discussed and it is proposedthat geometric logic is an appropriate basis for a Z-like speci�cation languagein which schemas are used as geometric theory presentations.A descriptional mechanism of \schema entailment", generalizing type con-structions and logical entailment, is de�ned and investigated in some examples,and is also used in de�ning schema morphisms which are discussed brie
y inconnection with schema connectives, and with specifying and implementing op-erations.1 IntroductionIn Vickers [10, 9] it was suggested rather brie
y that an \observational con-tent" of geometric logic made it a good candidate as a logic appropriate tospeci�cation. The aim of this paper is to amplify those remarks.What is Speci�cation?Fundamentally, a speci�cation must attempt to capture the relation betweenthe computer system and the real world, for that relation is what gives meaningto the electronic bit manipulations. In the words of Maibaum and Turski [8],the speci�cation binds together a program and its application. Of course, thereal world is ultimately informal, so that no formal system can ever truly bindto it. Nonetheless, in writing our speci�cation we should attempt to formalizeas best we can the application domain, that is to say those aspects of the realworld that are relevant to the meaning of the computer system. Thus logically,though not teleologically, the speci�cation binds together two formal systems:a formal theory of our view of the real world, and the formal theory of thecomputers.



What Sort of Logic?Having accepted that our speci�cation is to include an attempt at formalizingthe application domain, we should try to use a logic that is sympathetic to thereal world and does not try to foist on it artifacts of the formalism. To illustratewhat I mean, consider the formula9 x � (LivesIn(x ;LochNess) ^ Monster(x ))Assuming that the predicates LivesIn and Monster are interpreted approxi-mately in accordance with the corresponding English words, we can well imag-ine under what conditions we could know that the assertion is true (Figure 1).To be sure, this would take a lot of luck, serendipity or Divine Grace, but noparticular e�ort { in fact we can imagine others putting much time and re-sources into a vain attempt (Figure 2) to repeat our observation. And after ourrevelation we at least can be in no doubt about the truth of the assertion.
Figure 1 Figure 2But now consider its formal negation,8 x � (: LivesIn(x ;LochNess) _ : Monster(x ))There is no conceivable revelation of the truth of this assertion, and to checkit by personal e�ort is quite impracticable. On the face of it we'd have to lookat every thing and check that either it doesn't live in Loch Ness or that it's nota monster; and even more economical approaches such as draining the Loch andsifting through the muck at the bottom would be too di�cult in practice.



The moral is that negation is not the ino�ensive notion that classical logicwould make it appear, for it can completely change the character of an assertionto which it is applied. In fact we shall work with a positive logic, withoutnegation.One consequence of this is that it is much less meaningful to ask of anassertion, \Is this true or false?" Instead, one should ask, \What truth can I�nd in this?"Observational ClassesTo give a structure for a many-sorted classical theory, one interpretes eachsort as a set (its carrier) and each predicate { indeed, each formula { as arelation, a subset of the appropriate product of carriers (corresponding to thefree variables). Hence formulae are represented as sets.That is a mathematical semantics, but it is intended to indicate a real world(informal) meaning in that set-theoretic operations are considered in themselvesto have a clear meaning in the real world: set comprehension is \gathering thingstogether" (though one might question how meaningful this is for in�nite sets).We have no ready-made mathematical model for our observational notions,but let us at least brie
y recall the real world intuitions as set out in [10]. Aformula is to be interpreted as an \observational class" which comprises tworules:� How to know when you have \apprehended" an element of the class {i.e. observed its existence and got a hold on it for comparison with otherelements.� How to know when you have observed that two apprehended elements areequal.(The slightly fussy \how to know when you have." is intended to stress theserendipitous nature of observations that has already been remarked on.)I shouldn't pretend that this account of observational classes arises fullyformed out of a fundamental analysis of the nature of observations { on thecontrary, it is undeniably in
uenced by the existence of geometric logic with itsknown nice mathematics. One can certainly question some of the observationalassumptions. For instance, do we really always know how to observe equality?How do you apprehend a photon in such a way that you can observe its equalitywith another photon? Why shouldn't inequality be fundamental? Nonetheless,I believe the principles described here lead to speci�cations that are at leastbetter adapted to observational reality than those based on classical logic (orintuitionistic logic, for that matter).



Schemas as Theory PresentationsIn a theory presentation (which will be a schema in the Z-like language we shallpropose) the application domain, our view of the world, is to be described asfollows.� An extralogical vocabulary of sorts (base types), predicates and functionsrepresents the observational classes that we believe (informally) exist inthe application domain. Derived formulae will represent derived observa-tional classes. This will be described more fully in the next section, butremember that the connectives are not always those of classical logic { nonegation, for instance.� A set of axioms represents our background assumptions or hypothesesabout the real world. An axiom is not itself a formula (observationalclass), but compares two formulae by asserting that if one observation ismade, then another is also possible.As an example, the application domain for a genealogy database clearlyincludes notions of people and parenthood. We might start to present theirtheory as a schemaPeople[X ]ma; pa : X ! X6=: P(X � X )x 6= x =)x :X falsetrue =)x ;y:X x = y _ x 6= yma(x ) = pa(x ) =)x :X falseVni=1(xi = ma(xi�1) _ xi = pa(xi�1))^ (x0 = ma(xn) _ x0 = pa(xn)) =)x0;:::;xn :X false� \People" is the name of the theory.� X is the base type whose elements are people; it appears in the positionthat in Z is used for \generic types". Hence our account explains generictypes as sorts in a many-sorted theory.� The extralogical vocabulary appears in the upper part of the schema,which Z calls the \signature", while the axioms appears in the lower,\predicate" part. However, for us a \predicate" will be a predicate symbol(like 6=) in the vocabulary.



� We can observe when two people are di�erent people, but since inequality(unlike equality) is not part of the logic it must be supplied as an ex-tralogical ingredient of the theory, together with axioms (the �rst two) tocharacterize it as the complement of equality.A type that is equipped with inequality as well as equality is said to bedecidable.� ma and pa are to be total functions. Note that they could be equiva-lently presented as binary relations with axioms for totality and single-valuedness:ma : P(X � X )true =)x ;y:X 9 y � ma(x ; y)ma(x ; y) ^ ma(x ; y 0) =)x ;y:X y = y 0and similarly for pa.� People here are intended to be real people, not representations in thedatabase { the database will be described on top of the theory of realpeople (as a schema that includes People).� The third and fourth axioms are included for illustration { they are notintended to be complete. The third says that nobody can be both a motherand a father, while the fourth { a countable set of axioms, indexed byn > 1 { says that no one can be their own ancestor.Actually, we have already now encountered mathematical di�culties. Clearlythe database is �nite, and we cannot expect ma and pa to restrict to total func-tions on the database { we can't expect to know the parents of everyone. How-ever, mathematically speaking, the axiom of non-self-ancestrality is su�cient torule out any �nite models (except the empty set) and that should include theset of real-world people { surely that is �nite? Certainly we can give undoubtedupper bounds { a trillion trillion, say { for the number of people to date (and tointerpret ma and pa we don't need to consider future people), though perhapsit's unreasonable to expect a 1-1 function from the set of people to the set ofthe �rst trillion trillion natural numbers. One might think that the theory mustbe modi�ed in consequence { perhaps ma and pa are not quite total, everyonehaving a mother and a father except for Adam and Eve. Yet I cannot believethat this makes better observational sense than the theory given.A sharp question is the following: Can we accept that there is a 1-1 functionfrom the natural numbersN to the set of people, de�ned by n 7! man(S :J :Vickers)?It is di�cult to see how experience could con
ict with this idea. Allowing for



30 years per generation, reason would suggest that ma75(S :J :Vickers) is a well-de�ned person from the classical world, yet the chances of ever identifying herare negligible even for this small value of n. Perhaps one can argue from thisexample that the world is not logically classical.We shall use the term schema synonymously with (geometric) theory presen-tation. Of course, this is tendentious. Z-schemas are not generally understoodas theory presentations, and in fact some of the uses for schemas in Z are notreally compatible with this idea. We shall not use the standard Z-terminologyfor components of schemas:Z Heregeneric type base typesignature functions, constants and predicatesgeneric types + signature vocabularypredicate axiomsname with power set type predicate2 Geometric TheoriesThe logic we shall use is geometric logic, and our Z-like speci�cation languagewill be called, provisionally, GeoZ.An introduction to the basic notions of geometric logic is given in [9]. Letus now recall the de�nitions and explore the application to speci�cations.The Basic Form of PresentationsThe basic de�nition of a geometric theory is as follows: it comprises {� base types (or sorts)� function and predicate symbols� axiomsThe base types and function and predicate symbols should not cause anysurprise to anyone familiar with �rst-order many-sorted logic. Each function orpredicate has an arity describing the types of its arguments and (for a function)that of its result, so arities take the form P(X1 � � � � � Xn) (for predicates) orX1 � � � � � Xn ! X (for functions) where the Xi 's and X are types. IfP : P(X1 � � � � � Xn) and f : X1 � � � � � Xn ! Xand if each ti is a well-formed term of type Xi , then P(t1; : : : ; tn) is a well-formed formula and f (t1; : : : ; tn) is a well-formed term, of type X . Note thenullary cases, n = 0: then P is a propositional symbol and f is a constant .



Examples:less : P(X � X )snowing : P(1) (a propositional symbol)plus : X �X ! Xzero : X (a constant � could write zero : 1! X )In Z, the arities P(X1 � � � � � Xn) and X1 � � � � � Xn ! X are consideredto be types. This is not the case in GeoZ, where there is a �rm distinctionbetween types and arities. This is enforced mathematically, but the intuitionis that types represent observational classes whereas arities need not: there isno general prescription for apprehending functions or possibly in�nite subsets,nor for observing (in a �nite way) equality between them. Since we haven'tdescribed any type constructions yet (though they will come), the types Xi andX above must be base types in the basic form of presentation described here.When we come to the axioms, the geometric logic begins to make a bigdi�erence. A geometric axiom has the form � =)S  (� `S  in [9]) where� S is a �nite set of typed variables� � and  are geometric formulae whose free variables are all in S .Geometric formulae are constructed in an unsurprising way except that aparticular set of logical connectives is used. First, terms are constructed fromvariables (typed) and function symbols in the usual way. Then formulae � areof the form� ::= t1 =X t2 j P(t1; : : : ; tn) j false j true j � ^  j � _  j Wi2I�i j 9 x : X � �� In the equation t1 =X t2, t1 and t2 must be of type X (which in generalcan safely be omitted).� In P(t1; : : : ; tn), the types of the ti 's must conform with the arity of P .� In Wi2I�i , I can be any indexing set, possibly in�nite.� Despite the possibility of in�nite disjunctions, a geometric formula musthave only �nitely many free variables. However, it can have in�nitelymany bound ones.To illustrate quickly the observational content of the geometric connectives,consider 9 x : X � �(x ; y) where y : Y (X and Y are types, not arities). � isto represent an observational subclass of X �Y : to apprehend an element of ityou must apprehend elements x and y of X and Y , and make some additionalobservation to correspond to (x ; y) being in �. To observe that (x ; y) = (x 0; y 0),



you must observe that x = x 0 and y = y 0. Now 9 x : X � �(x ; y) is torepresent an observational subclass of Y . To apprehend an element of it, youmust apprehend a pair (x ; y) in �, and to observe that (x ; y) = (x 0; y 0) you mustobserve that y = y 0 { so the only di�erence between �(x ; y) and 9 x : X � �(x ; y)lies in the equality.Now consider an axiom � =)X  where X = fx1; x2; : : : ; xng, and each xihas type Xi . � and  then represent observational subclasses of �iXi (this is thecase even when not all the xi 's appear explicitly in � or  as free variables) andthe axiom asserts that the subclass for � is contained in that for  : wheneveryou have apprehended elements xi and made the extra observations for  , thenthe extra observations for  are also possible (even if you haven't made themyet). The axiom is not itself observable but asserts a hypothesis about the waythe observational classes relate.Extensions to the LogicPlainly the licence to use in�nitary disjunctions is a doubtful privilege. Youmight expect in practice to be limited to �nitary disjunctions by rather mun-dane considerations such as availability of paper (unless a formal set theory isbuilt into the logic, and we're not going to do that). Unfortunately, a restrictionto �nitary disjunctions is too restrictive for practical purposes. However, thereis the possibility of using �nitary notation for fragments of the in�nitary logic,and we shall use this technique extensively. It's important to understand thiscorrectly. GeoZ is not de�ned by a particular collection of �nitary constructions,but by in�nitary constructions for which we shall present some �nitary approx-imations that can be extended by \expert" users. (Non-expert users would usestandard packages.)That's rather vague. We shall see more speci�cally two regions where ex-tensions can be made: in the type system and in the logical connectives. Animportant principle that applies to both is that they should not increase theexpressive power of the in�nitary logic: the theories that can be presented usingthe extensions should be already presentable using the in�nitary logic.Extended TypesWe have already said very �rmly that Pand! are used to construct arities, andnot types. For solid mathematical reasons, they cannot be considered geometrictype constructors. However, there are plenty of useful type constructors thatare geometric. One is Cartesian product, which we have already seen used inarities. Other ones are disjoint union (coproduct), �nite power sets, and listtypes. We shall give a fuller list later.



The fundamental rule is as follows: a type construction can be consideredgeometric if it can be characterized uniquely up to isomorphism using geometricaxioms.To see how this works, consider Cartesian products. Let X and Y be typesin some theory S , and suppose we extend S to a theory T by adding {� another base type Z� functions �1 : Z ! X and �2 : Z ! Y� axioms {true =)x :X ; y:Y 9 z : Z � (�1(z ) = x ^ �2(z ) = y)�1(z ) = �1(z 0) ^ �2(z ) = �2(z 0) =)z ;z 0:Z z = z 0Given any model of S , we can make a model of T by interpreting Z as X�Yand �1 and �2 as the projection functions. But actually this is \essentially" (i.e.up to isomorphism) forced on us: in any model of T , Z has to be isomorphicto X � Y and �1 and �2 have to be isomorphic to the projections. Hence themodels of T are essentially the same as those of S , and the two theories areequivalent. Other constructions that can be characterized geometrically in thisway include disjoint unions (coproducts; even in�nitary coproducts), colimits,�nite limits and free algebras. Let us give a provisional, incomplete syntax oftypes X and arities �:X ::= hbase typei j X � X j X ] X j F X j seqX j � j � � �� ::= X j P(X ) j X ! X] is disjoint union, F is �nite power set (free semilattice) and seqX is a listtype (�nite lists over X { free monoid). We have simpli�ed arities by using thefact that Cartesian product is a type constructor.The � is a geometric formula. If its free variables x1; : : : ; xn have typesX1; : : : ;Xn , then � is a subtype of X1�� � ��Xn . There are various naughtinesseshere. We have assumed that � is associative and omitted brackets in X1�� � ��Xn , but of course it is actually associative only up to isomorphism. Also, thereis no reason why there should be a canonical order on the free variables of �,so we have even in e�ect assumed that � is commutative. Finally, it wouldactually be better to allow � to have \unused" free variables (as happens in anaxiom � =)X  { some of the variables in X may be unused in � and  ). Soall in all there is some formal imprecision in our use of formulas as types, butin practice we shall try not to leave any serious unresolved ambiguities.



3 Schema EntailmentWe propose a particular de�nitional method based on the idea of two theorieshaving \essentially the same models". It subsumes derived types, derived termsand derived axioms (i.e. logical consequences).Let S be a (geometric) schema, and let T be an extension for S : by thiswe mean that it comprises base types, vocabulary and axioms that become aschema when S is included. Or, to put it another way, T is understood in acontext that implicitly includes S , so that for instance the arities in T mayrefer back to S . We write S +T for the schema formed by including S in T (orextending S by T ), a superschema of S .Clearly every model of S +T yields a model of S by reduction. We say thatT de�nitionally extends S , and write S ` T , a schema entailment , i� reductiongives an equivalence between models of S +T and models of S { so S +T hasessentially the same models as S . (Remember that \essentially" here means\up to isomorphism".) Hence for any model of S there is one and essentiallyonly one way of interpreting the extra ingredients of T in it. (We also say thatS + T is an equivalence superschema of S .)Examples1. Suppose T contains axioms only:TaxiomsThen S ` T i� the axioms in T are consequences of the theory S . (Oth-erwise the axioms of T are proper constraints on S that are not satis�edby every model of S . Hence S + T has fewer models.)2. Extensions by pure de�nition are easily seen to be de�nitional in the sensejust given. For instance,People[X] grandma : X ! Xtrue =)x :X grandma(x ) = ma(ma(x ))



People[X] fullsib : P(X � X )fullsib(x ; y)()x ;y:Xma(x ) = ma(y) ^ pa(x ) = pa(y)3. We can use a similar technique for less direct de�nitions. For instance, herewe de�ne a function from its graph, a total, single-valued relation, thusgaining access to the term-forming mechanisms in the syntax of functions.[X ;Y ]P : P(X � Y )true =)x :X9 y : Y � P(x ; y)P(x ; y) ^ P(x ; y 0)=)x :X ; y;y 0:Y y = y 0 f : X ! Yy = f (x )()x :X ; y:YP(x ; y)Here is another example to show how a predicate can be considered as atype. [X ]P : PX [Y ]i : Y ! Xi(y) = i(y 0)()y;y 0:Y y = y 0P(x )()x :X 9 y : Y � x = i(y)4. De�nitional extensions are also used to characterize derived types, forinstance (a):[X ;Y ] [Z [� X ] Y ]]�1 : X ! Z�2 : Y ! Z�1(x ) = �2(y) =)x :X ; y:Y false�1(x ) = �1(x 0) =)x ;x 0:X x = x 0�2(y) = �2(y 0) =)y;y 0:Y y = y 0true =)u:Z 9 x : X � u = �1(x )_9 y : Y � u = �2(y)



This characterizes { it turns out { binary coproducts; in fact, more pre-cisely we have (b):[X ;Y ;W ]f : X !Wg : Y !W h : X ] Y !Wtrue =)x :X h(�1(x )) = f (x )true =)y:Y h(�2(y)) = g(x )These schema entailments are actually serving two purposes. Semantically,they assert essentially unique existence, while syntactically they introduce no-tation. For example, the notation ] for disjoint union, introduced in 4(a), isthen used in 4(b). By this use, the conclusion of 4(a) is implicitly included inthat of 4(b).By no means all of the examples given are intended to set up notation aswell as assert essentially unique existence. To exploit (3), for instance, if we aregiven a total, single-valued relation P then its corresponding function wouldnot always be called f . Rather, we should say something along the lines of \letg45 : X ! Y be the unique function satisfying y = g45(x )()P(x ; y)" (or,\let g45 : X ! Y be the function whose graph is P).Hence further work is needed to clarify the way that de�nitional extensionsare used syntactically.At the level of syntax, there is a certain analogy with type theory. Thatallows judgements such as \X is a type", \t is a term of type X " \P is aproposition", and \P is true", and its syntax provides rules under which in agiven context certain syntactic formations yield sound judgements. For instance,X type;Y type ` X ] Y typeX type;Y type; x : X ` �1(x ) : X ] YX type;Y type; x : X ; y : Y ; �1(x ) = �2(y) ` falseBy grouping together the right-hand sides of such entailments, the schemaentailment is able to elevate these syntactic rules into assertions with semanticcontent.Free AlgebrasIn [9] �nite power sets are characterized in a way that is equivalent to thefollowing de�nitional extension:



[X ] [Z [� FX ]]? : Zf g : X ! Z[ : Z � Z ! Ztrue =)S ;T :Z S [ T = T [ Strue =)S :Z S [? = Strue =)S :Z S [ S = Strue =)S ;T ;U :ZS [ (T [ U ) = (S [ T ) [Utrue =)S :Z Wn2N9 x1; : : : ; xn �S = fx1; : : : ; xngfx1; : : : ; xmg [ fy1; : : : ; yng = fy1; : : : ; yng=)x1 ;:::;xm ;y1;:::;yn :X Vmi=1Wnj=1xi = yj(Obviously from the syntactic point of view, this leaves a lot to be desiredbecause of the in�nities. Let us leave aside that issue for the moment.)A crucial feature of this de�nition, which can be proved from the schemaentailment given above, though it is not at all obvious, is that F X is the freesemilattice over X : in other words, we have[X ;M ]� :M �M ! M1 :Mf : X ! Mtrue =)u;v ;w :Mu � (v � w) = (u � v) � wtrue =)u;v :M u � v = v � utrue =)u:M u � 1 = utrue =)v :M u � u = u g : FX ! Mtrue =)S ;T :FXg(S [ T ) = g(S) � g(T )true =) g(?) = 1true =)x :X g(fxg) = f (x)In fact, the freeness property is already enough to characterize F X up toisomorphism. Hence the in�nitary part of the �rst entailment, though necessaryto ensure a de�nitional extension, is not needed for subsequent working. Giventhe two entailments together, we could work just as well if the �rst had its lasttwo axioms hidden from us.This phenomenon is rather general. For any �nitary algebraic theory, the freealgebras can be characterized by de�nitional extensions. However, the detailsof how this is done are generally boring. They rely on using in�nite (though



countable) disjunctions to capture all possible term formations and all possibleequations between terms. In practice it su�ces to rely on the general theoryto say that the de�nitional extension is possible and go on to the universalproperty.Bounded Universal Quanti�cationHodges [6] pointed out the speci�cational signi�cance of universal quanti�cationbounded over �nite sets, in the form 8 x 2 S � P(x ). These do not su�er fromthe observational problems of unbounded (or, rather, type-bounded) universalquanti�cation, for to observe 8 x 2 S � P(x ) where S = fx1; : : : ; xng, one simplyhas to observe P(x1) ^ : : : ^ P(xn ). In fact, such universal quanti�cation isgeometric: it can be characterized by a de�nitional extension (for simplicity weignore other arguments of P).[X ]P : PX 8 x 2 � P(x ) : PF Xtrue =) 8 x 2 ? � P(x )8 x 2 fx0g � P(x )()x0:XP(x0)8 x 2 S [ T � P(x )()S ;T :FX8 x 2 S � P(x ) ^ 8 x 2 T � P(x )Proof P is a function from X to 
, the set of truth values. Since we haveto work constructively, there may be truth values other than the classical trueand false; nonetheless, 
 has operations corresponding to the connectives ofintuitionistic logic, and in particular it's a semilattice under conjunction. Henceby the universal property of F X we get a homomorphism from F X to 
, andthis corresponds to the predicate 8 x 2 � P(x ) : PF X .If we have 8 x 2 S � P(x ) and also x0 2 S (which means S = fx0g[ S , thenwe can deduce P(x0) { an elimination rule for 8. On the other hand, we alsohave the usual introduction rule in the form[X ]P : PXS : F Xx 2 S =)x :X P(x ) true =) 8 x 2 S � P(x )



Proof Say S = fx1; : : : ; xng = fx1g [ : : : [ fxng. Then for each i we haveP(xi ), hence 8 x 2 fxig � P(x ), and it follows that 8 x 2 S � P(x ).The introduction and elimination rules show that 8 is a true universal quan-ti�cation.4 Morphisms of SchemasSuppose S and T are schemas, and we'd like to describe a transformation frommodels of S into models of T . One approach is to take a \generic" model of S ,one which has no properties at all except that it is a model of S , and show howto construct a model of T from it. Then what could be done for the genericmodel can also be done for any speci�c model, thus giving our transformation.This is perfectly common in mathematics. For instance in x 2 + 7x + 12, x is ageneric number for which any speci�c number can be substituted; and M is ageneric monoid in, \Let M be a monoid. Then M op is a monoid with the sameelements and unit, but for which multiplication is de�ned by x �M op y = y �M x ."It also lies behind 8-introduction in logic: to prove 8 x � (P(x ) ) Q(x )) youtake a generic c satisfying P(c) (i.e. it has no properties except P(c)) and proveQ(c) for it.Classically there is no generic model. For any property �, any classical modelmust satisfy either � or : � and so (unless one of these is a consequence of S )is not generic { a generic model would lack both the properties � and : �.Geometrically, however, we can �nd a generic model by changing our settheory: we imagine a set theory in which in addition to the ordinary sets wealso have \sets" corresponding to the vocabulary of S , and about which nothingis known except that they satisfy the axioms of S . These constitute the genericmodel of S . We also take everything that can be derived from these by geometrictype constructors. This gives a category S[S ] of derived types. Its objects,subobjects and morphisms are the sorts, predicates and functions that can becharacterized in de�nitional extensions of S , and we call it theG-frame presentedby S . (G-frame here is what in Vickers [9] is called a giraud frame; but theabbreviation allows us to honour Grothendieck as well. Ordinarily it is calledthe classifying topos for S , but, as discussed in [9], we reserve the word toposfor di�erent usage.)Now to construct a model of T from the generic model of S is to construct amodel of T in S[S ]. Hence the vocabulary ingredients of T , and the axioms too,must be interpreted as things that can be characterized in de�nitional extensionsof S . By putting them together, we �nd a single equivalence superschema S 0of S into which T can be translated very literally { base types for base types,symbols for symbols, axioms for axioms.We have now arrived at our de�nition of schema morphism from S to T : an



equivalence superschema S 0 of S , and a literal translation from T to S 0. Apartfrom some renaming, T can be considered a subschema of S 0.(Experts will understand that this is equivalent to a geometric morphismbetween classifying toposes: from [S ] to [T ]. However, it is also evidentlynot the whole story, because we should also de�ne when two morphisms areequivalent, or, more generally, what is a 2-cell (natural transformation) betweenmorphisms.)A consequence of this discussion is that the task of de�ning geometric mor-phisms is reduced to the task of knowing what extensions are de�nitional.Note: Maibaum and Veloso [7], who worked on the idea of speci�cation aslogical theory, de�ne a morphism from S to T (an implementation of T in S )to be a conservative extension S 0 of S together with a translation from T toS 0. Our de�nitional extensions are on the face of it more restrictive (topos-theoretically, a conservative extension corresponds to a surjective geometricmorphism from [S 0] to [S ], while a de�nitional extension corresponds to anequivalence). However, it appears that not too much has been lost by this, forthe increased expressiveness of the in�nitary disjunctions allows extensions to bede�nitional geometrically where they could only be conservative classically. (Anexample that is presented in more detail in [3] is the theory of natural numbers.)In any case, conservative extensions in geometric logic are not well-behaved(topos-theoretically, surjectivity of geometric morphisms is not preserved bypullback), so we'd prefer not to rely on them.In order to de�ne composition, we need the following \weakening" propertyfor schema entailment:Proposition 1 Let S � S 0 be schemas (i.e. S is a subschema of S 0), andsuppose S ` T. Then also S 0 ` T. �Now consider two composable schema morphismsS //� S 0 // T //� T 0 // ULet T 0, an equivalence superschema of T , be T +T 00 with T ` T 00. Since S 0is (modulo renaming) a superschema of T , we have S 0 ` T 00, so S 0 + T 00 is anequivalence superschema of S 0 and hence also of S , while it is also a superschemaof T + T 00, i.e. T 0, and hence also of U : we haveS //� S 0 //� S 0 + T 00 // T 0 // UThis gives the product of the morphisms.Having de�ned morphisms, an interesting possibility is that of using uni-versal properties in the category of schemas to characterize theories, insteadof using syntactic construction of the schemas. This is a key to modularity inspeci�cation, for it considers speci�cations not by their internal construction



but by their interface, how they relate to all other speci�cations (a universalproperty). As a �rst example, let us prove {Proposition 2 Schema conjunction is pullback.Proof [sketch only, in view of the 2-categorical complications]We haven't de�ned schema conjunction, but it is just as in Z. If S and T aretwo schemas then S ^ T has all base types, functions, predicates and axioms ofS and T . This is done on the understanding that when a symbol is common toS and T , it appears once only, as itself, in S ^ T { there is no attempt to maketwo copies and distinguish between them. This results in a pullback rather thana product.Let U be the vocabulary common to S and T . U is a subschema of both Sand T , and S and T are both subschemas of S ^ T , so we have a square {S ^ T��q //p S�� fT //g UWe show that it is a pullback. Certainly, because all the morphisms cor-respond to schema inclusions (no equivalence superschemas needed), we havep; f = q; g. Now suppose we have p0 : V ! S and q 0 : V ! T withp0; f = q 0; g. We have equivalence superschemas V1 and V2 of V such thatV1 is a superschema of S and V2 a superschema of T . By extending V1 withthe extra ingredients used in V2, we can �nd an equivalence superschema V 0of V that contains both V1 and V2. Hence it also includes both S and T , andhence also S = T , so we have a morphism h : V ! S ^ T such that h; p = p0,h; q = q 0.Specifying MorphismsA morphism from S to T says exactly how models of S are to be transformedinto models of T . However, one can imagine looser speci�cations. Consider aschema extension S + S1 of the form[argument types]argumentspreconditions + resultspostconditionsAlthough we haven't included them, this pattern could easily include \resulttypes" (types calculated from the arguments), auxiliary values used to help



express the postconditions, and changing states (initial state as an argument,�nal state as a result). Note that the postconditions can happily refer to thearguments.A translation from T to S + S1 in a sense speci�es a morphism from S toT , but doesn't implement one { unless S1 is de�nitional over S . To implementthe speci�cation is to give a further extension of S + S1 that's de�nitional overS .5 ConclusionsThe ideas presented here plainly have several radical di�erences from the con-ventional view of Z as set out in Brien and Nicholls [1].To mention �rst one of the less obvious, we have adopted rather fundamen-tally the idea of speci�cation as theory presentation ([8]). Hence, whatever youthink makes a good semantics of theories (and we have implicitly used categori-cal logic and classifying toposes) should also be the semantics for speci�cations.This provides an broad mathematical rationale for the semantic account.A second di�erence from the Z standard is that we have rather glossed oversyntactic issues { not because we believe them unimportant, but because wefeel that good syntactic solutions are still needed for some of the problems ofexpression. (We have already mentioned the question with schema entailmentsof how best to have them ful�ll two di�erent roles: the assertion of essentiallyunique existence, and the introduction of notation.) A fair proportion of the Zstandard is devoted to the syntactic issues of how the symbols introduced in aschema �t in an environment of symbols already established. Indeed, it is ratherdi�cult there to tease out any meaning of speci�cations that does not dependon the symbols. Very roughly, I believe the distinction is that in Z names areglobal, and structures are seen globally as assigning carriers and so on to some ofthe global names; whereas in GeoZ names and structures are understood locallyfor a particular schema, and { ideally at least { names in di�erent schemas arerelated by explicit translations (though we have mentioned schema inclusion,which has implicit translation determined by symbolic identity). Hence thenames in GeoZ have less primary importance. Related to this is the treatmentof generic types and values, though I must confess to not �nding the Z standardaccount very clear.Finally, the most striking di�erence is the use of geometric logic. Since thisrestricts the language quite considerably { in permitted type constructors andthe form of axioms (\schema predicates") { one is justi�ed in asking whetherthe restrictions are acceptable, notwithstanding our rationale in terms of ob-servations. Ultimately this can only be determined by putting the restrictedlanguage into practice, but supporting evidence has come from the work in [6]



\IZ". Independently of the ideas of geometric logic, Hodges has been looking ata similarly restricted logic with no negation or implication, nor universal quan-ti�cation except when bounded over �nite sets. By examining the case studiesin [5], he has formed the opinion that the restricted logic su�ces.Even if the restrictions still allow us to write reasonable speci�cations, onemight yet ask what is the bene�t of imposing them on ourselves. Again anysuggested bene�t would have to be evaluated in practice, but our intention isthat in GeoZ it should be much harder to write meaningless speci�cations. Forinstance, a postcondition for a procedure that says \
ag = true i� all crows areblack", with its universal quanti�cation over an observationally in�nite set, ismuch less meaningful than one that says \
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