Talk given 27 Nov 2011 PSSL 91 Amsterdam

Starting point: Arithmetic universes **"**AUs**, Joyal**

Preprint on web: "An induction principle for consequence in arithmetic universes".

Steve Vickers (Birmingham)

Joint work with Milly Maietti (Padova)

Problem: AUs not cartesian closed

Propositional Predicate Example: \mathbb{R}

Finite list of sorted variables

Finite order, many sorted, positive, infinitary

Signature Σ: Sorts, functions, predicates

Formulae ϕ: use $T, \wedge, \top, V, =, \exists$

Dilemmas can be infinite

Formalisation in context (x, ϕ)

Sequents $\phi \vdash \psi, (x, \phi), (x, \psi)$ both formalised in context

Formalisation of axioms

Theory Σ over Σ: set of sequents

Weak locatedness \Rightarrow strong

Given $\varepsilon > 0$

By induction:

$\forall n \in \mathbb{N} \quad (\exists q < 2^n \exists (L(q), R(q)) \land q - q_0 < 2^n \varepsilon)

\to \exists q \in \mathbb{R} (L(q), R(q)) \land q - q_0 < 3 \varepsilon$)

Base case $n = 0$: immediate

Suppose $L(q) \land R(q) \land q - q_0 < 2^n \varepsilon$

Cases

- Define q_1 by $q_1 = \frac{q + q_0}{2} < 2^{n+1} \varepsilon$
- $L(s_2)$
- $L(s_3)$
- $L(s_5)$
- $L(s_6)$

Use induction
For every $A : \text{list}(A)$, there is a map $\varnothing \to \text{list}(A)$ such that $A \times \text{list}(A) \to \text{list}(A)$ and $\varnothing \times \text{list}(A) \to \text{list}(A)$.

1. $\varnothing \to \text{list}(A)$
2. $A \times \text{list}(A) \to \text{list}(A)$
3. $\varnothing \times \text{list}(A) \to \text{list}(A)$

\[A \times \text{list}(A) \cong \text{list}(A) \]

Let $\varnothing = \text{cons}(\varnothing, \varnothing, \ldots, \varnothing)$.

\[\text{cons}(a, [a_1, \ldots, a_n]) = [a, a_1, \ldots, a_n] \]

Theory of AU is cartesian and can present with generators and relations.

For example, AU freely generated by a Dedekind section similar to $\text{Sh}(R)$.

Arithmetic space $X = \text{AU} \times X$ has AU functor in reverse.

Strictness

- AU has a canonical structure.
- Strict AU functors preserve it on the nose.

- AU functor preserves up to iso.

Universal algebra uses strict AU functor.

- Homomorphisms for cartesian theory of AU.

We need to use non-strict AU.

- Characterized by $A [u : u]$, where u is a function.

Locatedness

- "AU freely generated by Dedekind section".

- Which locatedness axiom?

Equivalence proof relies on cartesian closedness to interpret \Rightarrow as formula connective.

BUT AU are not cartesian closed in general.

Are axioms equivalent in AU?
Induction in \(\mathbb{N}\)

\[N = \text{List}(\mathbb{N}) \]

1. \(\phi \rightarrow N \quad \phi(0), \quad \phi(n) \rightarrow \phi(n+1) \Rightarrow \tau \rightarrow \phi(n) \)
 - \(\phi \) a subset of \(N \) closed under \(0, \text{succ} \)

\(\vdash: \text{whole of } N \)

2. \(\psi: \phi \rightarrow N \quad \phi(0) \rightarrow \psi(0) \quad ? \quad \phi(n) \rightarrow \psi(n) \)
 - **induction step?**
 - **for that fixed \(n \)**

Induction hypothesis:

- Fix \(n \) (generically), assume \(\phi(n) \rightarrow \psi(n) \)
- Working in \(\forall \mathcal{A}[n: \mathcal{A}] [\phi(n) \rightarrow \psi(n)] = \mathcal{A}' \) (say)

Induction step: In \(\mathcal{A}' \) have \(\phi(n+1) \rightarrow \psi(n+1) \)
- Can we deduce \(\phi(n) \rightarrow \psi(n) \) in \(\mathcal{A} \)? **Yes!**

Proof outline

- **Structure theorems ** \(\mathcal{A}[n: u] \approx \mathcal{A}/u \)
 - \(\phi \rightarrow 1 \approx \mathcal{A}[\phi] \approx \text{category of sheaves} \)
 - **subspace** open \(\mathcal{A}[\tau \rightarrow \psi] \), closed \(\mathcal{A}[\phi \rightarrow 1] \)
 - generate lattice \(= \mathcal{B} \langle \text{Sub}_{\mathcal{A}}(1) \rangle \)
 - classical logic of subspaces conservative over coherent logic of subobject
 - use Boolean manipulation of induction step to find properties in \(\mathcal{A} \)
 - new induction lemma to deduce conclusion from those properties

Structure theorems

\(\mathcal{A}[\phi \rightarrow 1] \) is a Boolean algebra

- \(B_\phi = \mathcal{B} \langle \text{Sub}_{\mathcal{A}}(1) \rangle \)

- Finitary sheaf: only finitary pasting

- Closed subspace is Stone over superspace

- \(x: \phi \rightarrow \text{Clop} \quad x \rightarrow (x \rightarrow \phi) \)

- \(x \rightarrow (x \rightarrow \phi) \)

- Presheaf \(F(d) \rightarrow F(0) \), iso if \(\phi \)

- Sheaf \(\approx F(1) \)

- \(\approx \text{object } U \text{ of } \mathcal{A} \text{ s.t. } U \rightarrow 1 \text{ iso if } \phi \)

- For any \(U \): coequalize \(U \rightarrow u \rightarrow u + \phi \rightarrow V(u) \)

- \(\approx \text{Va is monad, } U \text{ iso } \)

- \(\approx \text{finitely pasting} \)
Subspaces

A \[m \cdot 1 \] m monic in A

Preorder: A \[m \cdot 1 \] \leq A \[m \cdot 1 \]

If m_2 invertible in A \[m \cdot 1 \]

Semidirect :

A \[m \cdot 1 \] \cdot A \[m \cdot 1 \] = A \[(m + m_2) \cdot 1 \] \leq A \[m \cdot 1 \] \cdot A \[m \cdot 1 \]

If \(\phi, \psi \mapsto 1 \):

- open \(\psi = A \[\phi \mapsto 1 \] \cdot A \[\psi \mapsto 1 \] \)
- closed \(\neg \phi = A \[\psi \mapsto 1 \] \cdot A \[\phi \mapsto 1 \] \)
- crescent \(\neg \phi \mapsto \phi \)
- co-crescent \(\phi \mapsto \neg \phi \)

Booleans algebra of subspaces generated by

opens & closeds

If \(a = \bigwedge (\neg \phi, \psi) \in \mathcal{BA}(\text{Sub}_A(1)) \) write

\[0(a) = \bigwedge \mathcal{A}[\phi_i \mapsto 1] \] - meet of co-crescents

- preserves joins
- is order embedding (conservativity)
- closed subspace \(\neg \phi \) is Boolean complement of \(\phi \)
- \(A[\phi \mapsto 1] = \neg \phi \mapsto \psi \)

Induction hypothesis

\(A\[n \cdot 1 \] \neq \psi(n) \)

- as subspace of \(A[n \cdot 1 \] \)
- \(\neg \phi(n) \mapsto \psi(n) \)

Induction step \(\neg \phi(n) \mapsto \psi(n) \leq \neg \phi(n) \mapsto \psi(n + 1) \)

\(\neg \phi(n) \leq \neg \phi(n) \mapsto \psi(n + 1) \)

\(\phi(n + 1) \leq \phi(n) \mapsto \psi(n + 1) \)

\(\phi(n + 1) \mapsto \psi(n + 1) \)

\(\neg (n + 1) \mapsto \psi(n + 1) \)

in A[n \cdot 1 \]

Induction lemma

If \(\phi(n + 1) \mapsto \psi(n) \)

\(\phi(n + 1) \mapsto \psi(n + 1) \) then \(\phi(n) \mapsto n \cdot 1 \)

For \(k \cdot 1 \) can define \(A(k) = \{ j \in \mathbb{N} | j \in k, \phi(j), \ldots, \phi(k) \} \)

\(f_k : A(k) \rightarrow \psi(k) \) by recursion on \(j + k \)

Cases for \(f_k(j) \): \(j = k \leq 0 \)

If \(f_k(j) \rightarrow \phi(k) \)

Given \(\phi, f_k(n) \rightarrow \psi(n) \)

If \(j < k \):

\(f_{k \cdot 1}(j) = \psi(k - 1) \)

\(\phi(k) \mapsto \psi(k - 1) \mapsto \psi(k) \) (done)
Conclusions

- Can prove implications by induction even though not cartesian closed
- More general induction principles too
- Some results analogous to those for lattice of sublocales
- Some structure theorems for some classifying AUs
- More plausibility to general idea: use AUs to provide finitary fragment of geometric logic, strictly stronger than coherent