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Introduction

In this paper we give a brief treatment of a theory of proofs for a system of Full Intuition-
istic Linear Logic. Since Girard and Lafont’s original paper [13] on Intuitionistic Linear
Logic it seems to have been generally assumed that the multiplicative disjunction, par,
does not make sense outside the context of classical linear logic; in particular par was
thought to present problems for an interpretation of proofs as functions as described in
the first part of Abramsky [1]. However the connective par does have an entirely natural
interpretation in models of the kind developed in de Paiva [7], and it is our intention to
make good the claim that full intuitionistic is a significant dialect of linear logic.

We take as the main initial problem to be overcome the observation of Schellinx [22]
that cut elimination fails outright for the system of logic considered by de Paiva. There
seems to be a mismatch between this fact and the pleasing nature of the categorical seman-
tics. Our response is to develop a term assignment system which gives an interpretation of
proofs as some kind of non-deterministic function (which appears as a sequence of partial
functions evaluated in parallel). In this way we find a system which does enjoy cut elim-
ination. The system is a direct result of an analysis of the categorical semantics, though
we make an effort to present the system as if it were purely a proof theoretic construction.
Thus the proof-theorist that objects to category theory may safely skip the first section
and still make sense of the paper.

In this paper we restrict attention to the so called multiplicative (and modality-free)
fragment of Linear Logic as that is where the essential proof theoretic difficulty resides.
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In the interests of clarity we build up to our system by considering subsystems of the
multiplicative fragment. In all the subsystems we have a logic and its extension to a term
assignment system (which gives an interpretation of the notion of proof), and both of
these enjoy cut elimination (the term assignment system in a decorated sense that we shall
discuss). For our full system however the term assignment system does essential work.
It provides information in the dependence of formulae on the left and right of a sequent.
The natural cut elimination procedure works for it, but it does not work for any obvious
presentation of the pure logic.

In every case we equip the terms with a theory of equality which provides a term
calculus corresponding to the ‘natural categorical model’. The equalities are needed to
explain the extended sense of cut elimination, but this can be appreciated independently
of the categorical motivation for the equations. We have suppressed discussion of the com-
putational significance of the term calculus (in particular the relation with the reduction
processes in Benton et al. [3]).

This paper is organised as follows. In Section 1 we give an overview of our categorical
motivation. In Section 2 we present a simple term assignment for the tensor-implication
fragment of Linear Logic as described Girard and Lafont [13], and discuss its categorical
significance. In Section 3 we first introduce an eccentric system of par logic and the term
assignment for the par fragment of Intuitionistic Linear Logic and then we discuss the
system consisting of tensor and par alone. The heart of the paper is Section 4 where
we show how to control the interaction between (linear) implication and par. Section 5
concludes the paper, describing some future and related work.

1 Categorical Motivation

For general discussion of the notion of a categorical model of classical or intuitionistic
linear logic we refer the reader to the work of Seely [23], de Paiva [6], Benton et al. [3]. In
this paper we are concerned only with the multiplicative fragment of Linear Logic without
modalities and for that fragment we can give a succinct (preliminary) account:

e A categorical model of the multiplicative fragment of Classical Linear Logic consists
of a x-autonomous category in the sense of Barr [2];

e A categorical model of the multiplicative fragment of Intuitionistic Linear Logic
consists of a symmetric monoidal closed category in the sense of Eilenberg and
Kelly [10].

Now in many cases of interest models of the multiplicative fragment of Intuitionistic Linear
Logic (that is, symmetric monoidal closed categories) are in fact equipped with a second
symmetric monoidal structure. Moreover this second monoidal structure (O, L) is related
to the original monoidal structure (®,I) by what we [16] (and Cockett and Seely [5],
independently) have called a weak distributivity law: there is a comparison map

WA,B,C" A®(B|:|C) — (A®B)DC

satisfying natural coherence conditions which involve commuting one operator past the
other. (For details we refer the reader to Cockett and Seely [5]. As Joyal observed to us
coherence conditions can be given a simple geometric explanation, whence the connection
with braids.)



It seems reasonable to refer to a symmetric monoidal closed category equipped with
this additional structure as a (weakly) distributive symmetric monoidal closed category;
but that is a bit of a mouthful and so we have coined the term full multiplicative category.
As observed also by Cockett and Seely the notion of weak distributivity on its own is the
categorical counterpart of the tensor-par fragment of Linear Logic. (However as Cockett
and Seely are mainly concerned with Classical Linear Logic, they have to add to this
structure some extra maps.)

Thus we can add to the above account:

e A categorical model of the tensor-par fragment of Full Intuitionistic Linear Logic
consists of a weakly distributive category.

e A categorical model of the multiplicative fragment of Full Intuitionistic Linear Logic
consists of a full multiplicative category.

We now give three (families of) examples of full multiplicative categories and discuss them
briefly.

1. Domains and linear maps. As a simple example we consider the qualitative
domains introduced by Girard [12]: these are essentially domains X which appear
as subdomains of (P(]|X]), C), and we say that such a qualitative domain is on (the
underlying set of tokens) | X|. A linear map (not necessarily stable) f : X — Y of
qualitative domains is simply one which preserves all sups (unions) which exist in
X; note that such a map is determined by a subset {(z,y)|y € f({z})} of | X| x |Y].
If X and Y are qualitative domains, then X®Y is a qualitative domain on | X| % |Y|
where a € X®Y if and only if fst(a) € X and snd(a) € Y. If Y and Z are qualitative
domains, then Y —oZ is a qualitative domain on |Y'| x |Z| where ¢ € Y —Z if and only
if for all @ € Y the set {z|Jy € a.(y,2) € ¢} € Z. It is easy to see that linear maps
X®Y — Z are in bijective correspondence with linear maps X — Y —oZ, and hence
to check that the category of qualitative domains and linear maps has the structure
of a monoidal closed category. But this category has also another (symmetric)
monoidal structure. If X and Y are qualitative domains, then XOY is a qualitative
domain on | X| X |Y| where ¢ € XOY if and only if fst(a) € X or snd(a) € Y. It
is now easy to see that the weak-distributivity laws are satisfied, so that we have a
full multiplicative category. In fact as the astute reader will realise, this example is
a bit special; any qualitative domain has a comultiplication, so there is even a more
familiar (non-linear) distributive law X®(YO0Z) — (X®Y)O(X®Z). However if we
pass to more general domains we find that we still have a full multiplicative category
of domains and linear maps, but without the non-linear distributivity. Also it is
straightforward to extend this idea to categories of domains and stable linear maps,
which again have the structure of full multiplicative categories.

2. The Dialectica categories GC. We recall that a family of (categorical) models
of Intuitionistic Linear Logic and Classical Linear Logic have been provided by de
Paiva [6, 9] with the generic title of Dialectica Categories. The dialectica categories’
are (parametric) constructions that one applies to a given category C to obtain
other categories. In particular de Paiva describes the so called (Girard) categories

!The Dialectica categories [9] got their name from Hyland’s insight that it was possible to use them to
give an internal categorical characterization of Godel’s Dialectica Interpretation [15].



GC where objects are relations in C, that is monics of the form A — U x X and
morphisms are pairs of maps of C, f:U — V and F:Y — X such that a pullback
condition is satisfied. Every category GC is a full multiplicative category and more
they have finite products and coproducts (which model additives) and a comonad
‘" and a monad ‘?” (which model the exponentials). An important point about the
GC categories is that they were the first (non-syntactical) model of Linear Logic
which distinguished between all operators and units of the logic.

3. Curien’s category of games. In a circulated email message Curien has drawn
attention to a category based on Blass games [4] with partial strategies. In Blass
games G and H between Friend (whom we prefer) and Foe, the players have to move
alternately (so that there are no positions where both players may move). A Curien
game is a Blass game in which Foe must move first. A map f:G — H of Curien
games is a partial strategy for playing the game G—oH which amounts to a partial
strategy for playing the games G and H in parallel, according to the Blass par
convention that only Friend may move from one game to the other. (Note that G+
is G with the roles of the players reversed, so it is not a Curien game!) There is a
tensor product G®H of games, which corresponds to playing G and H in parallel
according to the Blass tensor convention that only Foe may move from one game to
the other; so in particular Foe chooses which game to start. The resulting category
is symmetric monoidal closed with the internal-hom —o giving the closed structure
corresponding to ®. However the category of Curien games also inherits a further
(symmetric) monoidal structure (O, L) defined by Blass. In the game GOH, Foe
plays the first move in both G and H simultaneously and thereafter the games are
played in parallel according to the Blass par convention. It is routine to define a weak
distributivity law for ® over O so that the category of Curien games is naturally a
full multiplicative category.

2 The tensor-implication fragment of Linear Logic

We recall the sequent calculus rules for the tensor-implication fragment of Intuitionistic
Linear Logic in Figure 1. We refer to this fragment (which Girard, Scedrov and Scott [14]
call rudimentary linear logic) as tensor-implication logic.

This is a familiar sequent calculus presentation for conjunction and implication with
the feature (typical of linear logic) that there are no rules of weakening or contraction.
Note the rule (Fzchange); throughout this paper we are only concerned with commutative
fragments of Linear Logic. On the left hand side of the turnstile we have a sequence of
formulae and on the right-hand side a single formula.

The Cut rule is an eliminable rule of the system. Every derivation which uses the rule
Cut can be transformed into a derivation without it. This ‘Cut Elimination Theorem’, a
deep result in some contexts, is here more or less a triviality.

We can fill out the system of tensor-implication logic to an assignment of terms, as is
done in Abramsky [1] and (in a very preliminary form) in Lafont [17]. We briefly sketch
this material and consider its categorical significance.

Following Abramsky’s notation, we first define collections of patterns and of terms.
Thus if X is a finite set of variables, define Px the set of patterns with variables in X by:

* € Py $®yEP{m’y}
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— Identity

AF A
IA,B,A+C
—— FEaxchange
IB,AJ/A+C
'-B B,AFC
Cut
AEC
r-A
— — (Ir)
rrrald -1
F,A,BI—C( ) r-A AI—B( )
—(® ®
T A2BFC  * I,AFA®B =
r-A A,BEC A+ B
—or ———(—or)
A, A—-BFC ' A—oB

Figure 1: Tensor-Implication Logic

Then define Tx the linear terms with set of free variables X, inductively as follows:
o €Ty

o x € Tp;

teTx,u €Ty, XNY = implies t ® u € Txuy;

te€Tx,pE€EPy,e€Tyuz, XNZ=0,YNZ=0( implies (lettbepine) € Txyz;

te Tx,u € Ty, X NY = 0 implies tu € Txuy;
e t € Txufa}, T ¢ X implies A\z.t € Tx.

The term assignment system for tensor-implication logic is displayed in Figure 2. Note
that here, as throughout this paper, where substitutions are indicated it is assumed that
the relevant variables actually appear.

Note that the new term constructor (let¢be z®yine) in rule (®,) (and similarly for
the rule (Iz)) binds the variables z and y within the term e. The reader will see that
here (as later) the term ¢ and pattern p appear in (let¢bepine) in the opposite order
to that traditional in functional programming where (let p = ¢ in ) would be used. We
find the non-standard order more intuitive when considering mathematical semantics, and
apologize for any confusion this convention may cause.

Now we adopt the perspective from categorical logic where types correspond to objects
of a category; terms correspond to maps (or arrows) and operations transforming proofs
into proofs correspond (if possible) to natural transformations between appropriate hom-
functors.



z: Az A

Iz:Ay:BI'Ff:C
Iy:B,z:AT'Ff:C

Exchange

I'Fe:A Ax:A-f:B

Cut
Al fle/z]: B
I'Fe: A Ax:BFf:C I'z:Are: B
—or) —oR)
Ig: A—oB,At fl(ge)/z]: C ' MAz.e: A—-B
Il'kFe:A
I (Ir)
F,x:Il—Ietmbe*ine:A(ﬁ) Fse
Ax:Ay:BFf:C 'Fe: A AFf:B
, (®c) (®r)
A,z: AQBF let zbez®yin f: C NAFe®f: ARB

Figure 2: Term Assignment System for Tensor-Implication Logic

The analysis of the system just given is most clear if we take seriously the fact that we
are dealing with sequents of the form I" - ¢: A. The structural rules Identity and Cut then
give a system corresponding to the notion of a multicategory (a recent reference is [18]); and
adding (Ezchange) gives rise to the notion of a symmetric multicategory. Then the rules for
the logical connectives ® and I provide a collection of terms suggesting that the connective
® should be ‘the’ representing tensor product for the multimaps of the multicategory.
In other words that we should have a (symmetric) monoidal multicategory in Lambek’s
terminology. The rules for the connective linear implication suggest furthermore that the
(symmetric) monoidal multicategory should be closed. Then a detailed analysis of the
process of assigning terms to proofs, taking in consideration cut elimination as well as
some simplifying extensionality assumptions (for a similar discusssion see the paper by
Benton et al. [3]) provides us with some (extra) equations, similar to the 5 and 7 rules of
standard lambda-calculus. These rules we collect in Figure 3.

The equality generated by (the typed version of) these rules gives us a theory which
we refer to as the term calculus of tensor-implication logic. The categorical counterpart
of this term calculus is the notion of a closed (symmetric) monoidal multicategory as is
made precise shortly. Of course we can now suppress the multicategorical aspects: a closed
(symmetric) monoidal multicategory is ‘essentially’ just a (symmetric) monoidal closed
category. But this identification can only be made at the cost of introducing questions of
coherence.

We now briefly explain the sense in which a closed (symmetric) monoidal (multi)category
is the categorical counterpart of the term calculus. Given such a (multi)category one can
inductively define an interpretation of the types and terms of the term assignment as
objects and (multi)maps of the (multi)category. (Technically the induction is over the
derivation of the sequent I' - ¢ : A but one can readily show that the interpretation is



let * be x ine = e
let wbe * in f[/7] — flu/7]

let e®t be 2@y in u = ule/z,t/y]
letube 2@y in flz®y/z] = flu/7]
(\z.t)e = tle/a]
Azt = ¢

Figure 3: (Tensor-Implication) Categorical equalities

independent? of the derivation.) In such an interpretation the (typed) equalities of Fig-
ure 3 hold. Furthermore the usual term model construction of categorical logic gives for
any theory a (multi)category in which just the (typed) equalities of the theory hold. This
in outline proves the following result.

Theorem 1 The (typed versions of the) equalities of Figure 3 are sound and complete for
interpretations in symmetric monoidal closed categories.

We can now consider what becomes of the process of cut-elimination once terms have
been added to the system. While cuts cannot be eliminated outright, they can be elimi-
nated modulo the categorical equalities just introduced.

Theorem 2 If the sequent T' -t : A is derivable then, for some t, the equation t =t is
provable from the given categorical equalities (using typed equational logic) and T Ft: A
is derivable without the Cut rule.

The proof of this theorem is an extension of the usual proof of cut elimination; one
simply carries the terms along with one. At various points equational consequences of
the categorical equalities are needed. These are all instances of the naturality equations
displayed in Figure 4; the reader may like to check that the naturality equations are conse-
quences of the categorical equalities of Figure 3. This seems to be related to the interesting

flletube * ine/y] =letube * in fle/y]

fllet u be zQy in g/w] = let u be zQy in flg/w]

Figure 4: Naturality Equations

computational issues which arise if we regard the categorical equations as reduction (or

2The reader is warned that this observation should be repeated (mutatis mutandis) for all the systems
that we consider in this paper.



computation) rules from left to right. We then do not have a confluent system, and
application of a Knuth-Bendix algorithm leads to further reductions: ‘pushing-in’ rules
like

(letwbez®yint)@w > letwbez®yin (t®w)
w @ (letwbezx®yint) > letwbezx@yin (v ®t)

and a rule (corresponding to associativity of composition) like:
let (lettbez ® yinv) bex’ @ y'inu > lettbez @yin (letvbez ®y'inu)

all of which correspond to instances of the naturality equations. We believe that we do
obtain a rewriting system with the Church-Rosser property, but have not written out all
of the details.

3 Weakly Distributive Logic

As soon as we try to incorporate the multiplicative disjunction par into our logic we are
forced to consider traditional sequents with many “hypotheses” and many “conclusions”.
Our main innovation is to introduce a term assignment system and a term calculus in such
circumstances. In an attempt to make the idea clear we first consider an eccentric system,
that of the connective par alone.

3.1 The Par Logic

Since the multiplicative disjunction par is the least understood of the Linear Logic connec-
tives we first present the logical system of par logic. We write par - Girard’s upside down
ampersand - as a O not only for typographical reasons, but also because it has different
properties from Girard’s connective, for instance AOB in Full Intuitionistic Linear Logic
is not the same as (A+ ® B+)', as is the case in Classical Linear Logic. It is natural to
formalize the par fragment of linear logic in an eccentric sequent calculus in which on the
left-hand side of the turnstile we have exactly one formula, while on the right-hand side we
have a sequence, A, of formulae. In other words we adopt a restriction dual to the one in
Minimal Logic [21]. The sequent calculus rules for par logic are displayed in Figure 5. Note
that this system is an exact dual of the system of tensor logic (tensor-implication logic
without the rules for implication). In particular the Cut rule is certainly an eliminable
rule of the system.

Now we describe a term assignment system for par logic. The duality that we have
just drawn attention to breaks down completely: we hold on to a traditional interpretation
of ‘proofs as functions’ by declaring a variable in the single hypothesis on the left of the
turnstile, and presenting terms in each of the many conclusions on the right of the turnstile.
(It may help the reader to think very roughly of the terms as denoting partial functions
working in parallel, one of which should deliver a value.)

If X is a finite set of variables, we define Py the set of patterns with set of variables
X by:

z0O— € P{m} -0y e P{y}
Now we define Tx the linear terms with set of free variables X, inductively as follows:
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— Identity

AFA
AFAB,C,A
Ezxchange
AFAC,B, A
A+ A, B, A BFET
Cut
AFAT, A
AFA
— (L) — (L
Lk A AL
AFA BF A’ AFA,B,C, A

Od
AOBF A, A’ (Oc) Ak A, BOC, A

Figure 5: Par Logic

T € 7'{56};

o € Ty;

t € Tx,u € Ty implies t0u € Txyuy;

teTx,p €Py,u€ Tyuz, XNZ=0,YNZ =1 implies (lettbepinu) € Txuz.

(This definition is slightly more general than necessary for this section.)

We present the term assignment system for par logic in Figure 6.

To emphasise the fact that we are dealing with multiple conclusions we write the
comma on the right-hand side of the turnstile as a vertical bar, a familiar notation in
Computer Science for some kind of parallel process. A notational convenience is to write
the sequence of formulae I" as {C;}icr and A as {D;}ic;. Also we would ideally write a
sequent in the par term assignment system as

x:AF...|di:D;| ...

but to save space we omit the ‘dots’ (and bars) on either side of the formulae containing
indices; the reader should take these as indicating sequences of term assignments (sepa-
rated by our vertical line). The new term constructor (let ¢ be pine) also binds variables
like the let for tensor, but they should not be confused.

Though this system is in no immediate sense dual to the term assignment system for
tensor logic, there is a kind of translation which we do not have space to describe here,
but whose nature should be clear from the categorical semantics. Categorically the system
consisting only of the structural rules (Identity, Fxchange and Cut) corresponds to the dual
of a (symmetric) multicategory. (It does not seem worth coining a name for this notion.
Recall that unlike the notion of a category, the notion of a multicategory is not self-dual.)
Hence as before we expect the full system with the logical rules for par to correspond to
the dual of a (symmetric) tensor multicategory. Again if we suppress the multicategorical
aspects we deal simply with a symmetric monoidal category.
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z: Az A

z:AFA|t:B|A y:BF fi:C;

ut
z:AFA
— (L) i
r: Lk x:Al—o:J_|A(R)

xAI—dZCz y:BFfj:Dj
z: AOBF let zbexzO — ind; : C; | let zbe — Oyin f;: D;

(O¢)

z:AFAle:A|f:B
z:AFA|eOf: AOB

(Or)

Figure 6: Term Assignment System for Par Logic

As for tensor-implication logic we need some equations to make the tie up between
the syntactic calculus and the expected semantics. The categorical equations are given
in Figure 7. Note that in this system there is no ‘S-rule’ for the conective L. The first
equation is the ‘np-rule’ for L, the next two constitute the ‘S-rule’ for O abd the final
equation the ‘n-rule’ for O. Figure 8 contains the two naturality equations associated with
the connective par, which as in the case of @ follow from the categorical equations of
Figure 7.

u=o
let uOv be 20 — int = t[u/x]
let uOv be — Oy int = t[v/y]

(letwbe xzO — inz)O(letube — Oyiny) = u

Figure 7: (Par) categorical equations

lett be zO — in f[u/z] = f[lett be 20 — in u/x]

lettbe — Oyin flv/y] = fllettbe — Oyinwv/y]

Figure 8: (Par) naturality equations

Since we do not intend that par logic should be taken too seriously on its own it
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does not seem worth stating formally the soundness and completeness theorem nor the
decorated cut-elimination theorem for it. As for the term calculus for tensor-implication
logic, interesting questions arise when we read our equations as rewrite rules, but we shall
not consider these here.

3.2 The tensor-par fragment of Linear Logic

Suppose that we now consider a system of logic for tensor and par. We have to use
traditional two-sided sequents, but since there is little difficulty in giving the logic in this
form, we shall proceed to the term assignment system. We take patterns and terms given
by the clauses of previous sections (except that the connective linear implication is not
dealt with) and we present the term assignment system for this fragment of Linear Logic,
called tensor-par logic, in Figure 9.

——— Identity
rz:AFz: A
TEA|t:A]A y: AT+ fi: B
Cut
DT EA filt/y]: Bi | A
Iz:Ay:BI'FA TFA|f:A|g:B|A
Exchange, Ezxchanger
Iy:B,z: AT FA F'FAlg:B|f:A|A
ket A
—— (Ir) (Ir)
D,z:1F letzbe * ine; : A, b ]
Iyz:Ayy:BF f;i:C; F'kFe:A| A I'Ef:B|A )
Xc ®
T,2: A@BF let z be 2@y in f; : C; T.T'Fewf: A®B | A| A © °
r-A
(Le) — (L
z: Lk FI—O:J_|A(R)
Lz: Ak d;: C; Iy: Bt fj: D,

Ug
I,T',z: AOBF letzbexO — ind; : C; | let 2 be —Dyinfj:Dj( )

'Fe:A|f:B|A
'FeOf: AOB | A

R)

Figure 9: Term Assignment System for Tensor-Par Logic

The question of a categorical model provides us with more of a problem. First we
have to understand what is needed to model the structural rules. Essentially this induces
the notion of a polycategory, introduced many years ago by Szabo [24]. Now the term
assignment suggests that we must have representing objects for operations on multimaps
and comultimaps as forced by the categorical equations. But there is a bit more to it
than that, as we always have two-sided sequents. Recall that in Intuitionistic Logic one
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has conjunction A and disjunction V and the rules of the logic are reflected exactly in the
structure of a distributive lattice (or category). In Linear Logic we keep a vestige of that
distributivity, a weak form of distributivity between tensor and par given by natural maps

w:A® (BOC) — (A® B)OC

w': (AOB) ® C — AO(B® C)

satisfying appropriate coherence conditions. (As we assume symmetry we do not really
need the dual w'.) Hence the categorical model for the tensor-par calculus is a (symmetric)
weakly distributive (bi)tensor polycategory. As before we can suppress completely the
polycategorical structure and deal with (symmetric) weakly distributive categories.

Putting together the categorical equations for tensor and par we obtain Figure 10. As
before the equality generated by these rules gives us a term calculus. We can inductively
define an interpretation of types and terms of the term assignment system as objects and
maps of the (symmetric) weakly distributive category. A sequent

z:1'—> fz : A
is interpreted as a (poly)map
C1®...9C, — D10...0D,,

And we can state the result.

let * be * ine = e

let ube x in f[x/z] = flu/z]

let e®t be z®y inu = ule/z,t/y]
let u be zQy in flz®y/ %] = flu/z]

let uOv be zO — int = tlu/x]

let uOv be — Oy int = tv/y]
(letubexzO — inz)O(letube —Oyiny) = wu

Figure 10: (Tensor-Par) categorical equations

Theorem 3 The (typed versions of the) equalities of Figure 10 are sound and complete
for interpretations in (symmetric) weakly distributive categories.

Again if we consider what becomes of the process of cut elimination for the the tensor-
par term assignment system we get the following result.

Theorem 4 If the sequent I' & t;: D; is derivable then for some terms t;, t; = t; in the
term calculus and the sequent T' & t;: D; is derivable without the Cut rule.
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The proof is again routine, simply follow the steps of the standard process of cut
elimination carrying the terms.

We note that the logical system of tensor-par logic has been independently considered
in Cockett and Seely ([5]); indeed they coined the term weakly distributive category.
They take a more general view of the categorical semantics (in that they do not presupose
symmetry), and they present (in their setting) the coherence conditions.

4 The multiplicative fragment of Full Intuitionistic Linear
Logic

First we give a brief account of the problem, a solution to which is sketched in this section.
Suppose that we take a system of logic incorporating tensor, linear implication and par.
We would have to use traditional sequents to handle par, and the non-obvious feature is
the treatment of the rules for linear implication. A natural guess, based on experience
with Intuitionistic Logic (see, for example, Takeuti [25]) is that we need simply restrict the
rule (—or) to the case where there is just one formula to the right of the turnstile. This is
the choice made in de Paiva [6] and it seems a good one at least in as much as it is justified
by the models. The proposed system is sound for the models while an unrestricted system
(in which for example (AOB —o A)OB is valid) is not sound.

However, again as suggested by experience with Intuitionistic Logic, there are con-
siderable problems with a system of this kind. It appears to lack some computational
significance in that the natural process of cut elimination breaks down. Of course the cut
rule may still be redundant as in the case of the multiple conclusion formulation of Intu-
itionistic Logic (we have not got round to checking this). But that always seems something
of a cheat. Even more tellingly, there is a definite negative result to contend with. For
Schellinx has shown [22] that in a system including the additives, there are valid sequents
for which there is no cut-free proof. There the cut elimination theorem fails.

We solve these problems (here) by concentrating on an appropriate term assignment
system.

4.1 Term Assignment for multiplicative Full Intuitionistic Linear Logic

We take the collection of patterns and terms generated by the clauses from previous
sections. Then our proposed term assignment system for the multiplicative fragment of
Full Intuitionistic Linear Logic is presented in Figure 11.

The crucial rule is linear implication on the right (—o,) where the side condition is
motivated by the categorical semantics, which we now describe.

Suppose that we have a full multiplicative category, that is a symmetric monoidal
closed category which is weakly distributive. We first need a definition.

Definition 1 Suppose that we have a map of the form
frA®B — COD

in a weakly distributive category C. We say that C is independent of B (for f) iff there
exists an object . of C and maps g: A — COFE and h: EQB — D such that the composite

g®1 w 10h
A®B ——— (COF)@ B ———— CO(E®B) ———— C'0D

s equal to f: AQB — COD
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Identity

rz:AFz: A
'Ft: A A y: AT & fi: B;
Cut
DT EA| filt/y]: Bi
Iz:Ay:BI'FA FTFA|f:A|g:B|A
FExchange, ;
Iy:B,z: AT'FA 'FA|g:B|f:A|A
ket A
L (Ir) (Ix)
I,z:IFletzbe x ine; : A; o T
yz:Ayy:BF fi:C; F'kFe:A| A I'Ef:B|A
®
I'z: A®QB | let zbe z®yin f; : C; [,VFexf: AQB |A | A
r-A
(Le) — (L
z:lk FI—O:J_|A( ®)
F,.’EA"dZCz Fl,y:BFfj:Dj

Ug
I,T',z: AOBt letzbexO — ind; : C; | let 2 be —Dyinfj:Dj( )

TFAle:Alf:B|A
I'-A|eOf : AOB | A

(Or)

F'Fe:A| A A.z:BF f;:C;
I',g: AoB,AF fi[(ge)/z] : C; | A

—or

Fz:AFe:B|A
'FAz.e: A-oB| A

if & A(—oR)

Ezxchanger

®R)

Figure 11: Term Assignment System for Full Intuitionistic Linear Logic
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Then we need a couple of lemmas.

Lemma 1 Suppose we have a map f: AQB — COD in a full multiplicative category C.
If C is independent of B for f then there exists an f: A — CO(B—oD).

Thus in the case that C is closed we have a preferred object B—D in C which is
an instance of the object E referred to in the definition above. Now we show that the
operation

f=f

preserves other independences.

Lemma 2 Suppose we have a map f: AQBRC — DOFEOF in a full multiplicative cate-
gory C. Suppose also that DOE is independent of C for f so that we have a map

A®B ——— DOEDO(C—oF)

Then:
o If F is independent of B for f then C—oF is independent of B for f.
e If E is independent of B for f then E is independent of B for f.

We use these two lemmas in the course of the inductive definition of the interpretation
of a sequent I' - ¢; : D; in Full Intuitionistic Linear Logic as a map

(LR ...®C, —— D{0D,0O...0D,,

in a full multiplicative category. In addition we need a lemma relating the categorical
structure with the syntactic condition on the (®%) rule. Suppose in a sequent like the
above we want to abstract the variable z; in the term ¢; that is we want to form A\z;.t;.
We can show inductively that:

Lemma 3 If the variable x; : C; does not appear in {ODg|k # j} then {ODy|k # j} is
independent of C; in the interpretation

Ci(CHR ...®C, ——— D10D-,0O...0D,,

This lemma justifies the restriction on the (®%) rule. Note that no new equations are
introduced by this restriction. Hence we can state:

Theorem 5 The equalities of Figure 8 and Figure 7 are sound and complete for inter-
pretations in full multiplicative categories.

4.2 Cut Elimination

Our main result is that the cut elimination theorem holds for the term assignment system
we have presented for (the multiplicative fragment of) Full Intuitionistic Linear Logic.

Theorem 6 If the sequent I' & t;: D; is derivable in the multiplicative fragment of Full
Intuitionistic Linear Logic then for some t;, t; = t; in the term calculus and the sequent
'+ t;: D; 4s derivable without the rule Cut.
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Proof. We give an outline of a typical step in the cut elimination procedure in the
troublesome case. Suppose that we have a derivation of the following form:

A,B,C+D
———— (-—or)
I'+AB A,BFC—oD
Cut
AR A,C—oD

We can easily arrange things so that in the cut elimination procedure we transform this to

THAB A,B,C+D
Cut
IA,C+A,D
(—owr)
AR A,C—oD

But the latter is not a valid derivation in the system of de Paiva [7] as the use of the
rule (—og) is only permitted when there is just one formula on the right hand side of the
sequent. However, if we add terms we get

Z:Ajy:Bw:CkFt:D

_ - (—or)
z:I'Fr:As: B z:A,y:Bl—)\w.t:C—oDC
ut
z:IZ:AFr:A|  w.t:C—oD
and we may transform this into
z:'Fr:A|s:B Z:Ajy:Bw:CkFt:D
Cut
z:0zZ:Abw:Ckr:A|t:D )
T:12:AkFr:A|t:C—oD &
which is valid in our system as w does not appear (free) in r.
The cut elimination process can now be pushed through in a standard way. O

We do not know whether the cut elimination theorem holds in the weak sense for
the multiplicative fragment in the formulation of de Paiva [7]; that is it may be that
every derivable sequent has a cut-free derivation even though the cut elimination process
is blocked (after all this is what happens in the usual formulation of multiple-succedent
Intuitionistic Logic). However Schellinx [22] shows that even this does not hold once one
includes the additive constant 0.

5 Conclusions

We would not wish to overplay the conclusions to be drawn from the work presented
here. However one phenomenon seems worth drawing attention to. A number of proof
theorists have been drawn to decorate sequents with additional information in order to
enable them to give a satisfactory presentation of a logic. Simple examples of such use
include Zucker [26] and Pottinger [20]. More extensive examples are Gabbay [11] and
recently Parigot [19]. Our use of terms can be seen in this light. Our term assignment
system essentially does nothing more than provide additional information by keeping track
of those formulae to the right of the turnstile which are in some sense independent of a
given formula to the left. What we would like to stress is the novel (and, if so wished,
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hidden) use of categorical logic here; the additional information is derived from (the syntax
for) a categorical semantics.

We note that there is a presentation of Intuitionistic Logic with two-sided sequents
analogous to our system for Full Intuitionistic Linear Logic. For this system, the natu-
ral cut elimination procedure goes through (for more details see [8]). The resulting term
calculus may of interest to some as it provides a unified syntax for cartesian closed and dis-
tributive categories, both of which have been used as the basis for approaches to functional
programming.

It still remains to give a satisfactory intuitive account of the computational meaning
of the term calculus for Full Intuitionistic Linear Logic. With other colleagues we have
been trying to give an interpretation in terms of processes, but we rather hope that a
number of different interpretations will emerge. We should like to end by recording our
belief in the significance of Full Intuitionistic Linear Logic. It seems to provide a context
for considering different interpretations of functional programming, and as such to deserve
further attention.
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