Modal Reasoning = Metric Reasoning, via Lawvere

Francesco Gavazzo (joint work with Ugo Dal Lago)

University of Bologna & INRIA Sophia Antipolis
A Long Introduction
Why This Talk?

Extensional properties of programs

- Does the program terminate?
- Does the program raise errors?
- What the program computes
Why This Talk?

Extensional properties of programs

- Does the program **terminate**?
- Does the program raise **errors**?
- **What** the program computes

Programs as black-boxes

- Relations between **input-output**
- Do not care **how** output is produced
- Same IO behaviour implies **equivalent** programs
Why This Talk?

Extensional properties of programs
- Does the program terminate?
- Does the program raise errors?
- **What** the program computes

Programs as **black-boxes**
- Relations between input-output
- Do not care how output is produced
- Same IO behaviour implies equivalent programs

Mathematical foundation
- Type theory
- Denotational Semantics
- Program equivalence
Intensional properties of programs

Focus on how programs compute

Is the program efficient?
Is the program secure?
Is the program robust wrt variations in the input?
Example 1: Information-Flow

Q. Is f secure?
Example 1: Information-Flow

Q. Is f secure?

secure = classified information cannot flow-out of programs
Example 1: Information-Flow

Q. Is f secure?

secure = classified information cannot **flow-out** of programs

Example

```
key \geq 0
```

- If $key \geq 0$, then the key is not secure.
- If $key < 0$, then the key is secure.

key: 0 (true) and 1 (false)
Example 2: Program Sensitivity

Q. Is \(f \) robust to \textit{variations} in the input?
Example 2: Program Sensitivity

Q. Is f robust to variations in the input?

k-robustness (aka sensitivity) = errors in input are amplified at most of a factor k
Intensional Program Analysis

Q. How to guarantee intensional properties of programs?

Q. How to reason about programs intensionally?
Q. How to guarantee **intensional** properties of programs?

Type Theory

Information-flow key: \([\text{secret}]\tau\)
Sensitivity: \(f: [k]\tau \rightarrow \sigma\)

Q. How to reason about programs **intensionally**?
Intensional Program Analysis

Q. How to guarantee **intensional** properties of programs?

Type Theory

- Information-flow key: $[secret]_\tau$
- Sensitivity: $f: [k]_\tau \rightarrow \sigma$

Q. How to reason about programs **intensionally**?

Program Equivalence
Goal: Identify programs with the same operational behaviour
Program Equivalence

Goal: Identify programs with the same operational behaviour

Applications in program **correctness, refactoring, and optimization**

- **HO Arithmetic**
 \[\lambda x. \lambda f. f(x + 0) \simeq \lambda x. \lambda f. f(x) \]

- **Structural equivalences**
 \[\left(\begin{array}{c}
 \text{let } x = a \\
 y = b \\
 \text{in } f(x)
 \end{array} \right) \simeq \text{let } x = a \text{ in } f(x) \]
Program Equivalence

Main feature: compositionality

\[f \xrightarrow{\sim} g \]

\[k \xrightarrow{\sim} \begin{array}{c} f \\ j \end{array} \xrightarrow{\sim} \begin{array}{c} g \\ j \end{array} \xrightarrow{\sim} e \]
Q. Program equivalence for intensional program analysis?
Q. Program equivalence for intensional program analysis?

Non-Interference (Abadi et al., 1999)

\[\forall \text{key}_1, \text{key}_2 : [\text{secret}] \tau. \forall \text{public}. \]

An observer with **public permission** cannot infer whether the first input is \text{key}_1 or \text{key}_2.
Program Equivalence

Metric-preservation (Reed & Pierce, 2010)

\[a \sim_\varepsilon b \implies a \xrightarrow{f} k \varepsilon b \xrightarrow{f} b \]

\textit{k-robust} programs preserve \texttt{approximate equivalence} up-to a factor \textit{k}
Summing-up

Two intensional analyses of programs

All analyses performed in languages with suitable type systems

Intensional properties of programs via program equivalence

<table>
<thead>
<tr>
<th>Security</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>[secret]_τ</td>
<td>[k]_τ</td>
</tr>
<tr>
<td>Non-interference</td>
<td>Metric-preservation</td>
</tr>
</tbody>
</table>
Two intensional analyses of programs

All analyses performed in languages with suitable type systems

Intensional properties of programs via program equivalence

Security
[secret]τ
Non-interference

Sensitivity
[k]τ
Metric-preservation

Further examples: dead-code analysis, strictness analysis, resource/usage analysis, ...
Q. Can we give a uniform account of all these phenomena?
Q. Can we give a uniform account of all these phenomena?

Type Systems

Graded modal types (Orchard et al., 2019; Gaboardi et al., 2016)

Program Equivalence

This talk
Intensional vs Extensional PE

Extensional Program equivalence
Programs are equivalent for any observer
Intensional vs Extensional PE

Extensional Program equivalence
Programs are equivalent for *any* observer

\[e \simeq e' \]

Intensional Program equivalence
Programs are equivalent wrt observers’ features

\[e \simeq e' \]
\[e \simeq e' \]
\[e \simeq e' \]
\[\varepsilon \]
Intensional vs Extensional PE

Intensional Program equivalence
Programs are equivalent wrt observers’ features

\[\text{key}_1 \sim \text{key}_2 : [\text{secret}]_{\tau}\]

- Depend on the observer’s permission
- Public permission \(\implies\) \(\text{key}_1 \sim \text{key}_2\)
- Secret permission \(\implies\) \(\text{key}_1 \not\sim \text{key}_2\)
Program equivalence for graded modal types

\[w \models e \approx e' \]

- Eq. wrt possible worlds
- Intensionality as in logic

Metric Reasoning
- Intensional equivalence
- Program distance

Abstract compositionality
- Non-interference
- Metric Preservation
Related Work
Related Work

Bounded Exponentials
- (Girard et al., 1992)
- **Resource-usage** (M. Hofmann, 1999)
- **Complexity** (Lago & Hofmann, 2009)
- **Sensitivity** (Reed & Pierce, 2010)

Information-flow
- (Abadi et al., 1999)
- (Volpano et al., 1996)
Related Work

Bounded Exponentials
- (Girard et al., 1992)
- Resource-usage (M. Hofmann, 1999)
- Complexity (Lago & Hofmann, 2009)
- Sensitivity (Reed & Pierce, 2010)

Information-flow
- (Abadi et al., 1999)
- (Volpano et al., 1996)

Graded and Quantitative Types
- (Wood & Atkey, 2020)
- (Ghica & Smith, 2014)
- (Atkey, 2018)

Coeffects
- (Petricek et al., 2014)
- (Gaboardi et al., 2016)
- (Brunel et al., 2014)

How code can be manipulated
Related Work

Graded Modal Types
Modal types indexed by grades

Programming language **Granule** (Orchard et al., 2019)

Graded (co)monadic denotational semantics (Gaboardi et al., 2016)

Logical relations (Abel & Bernardy, 2020)
Modal Reasoning
Goal. Program equivalence for languages with \textit{graded modal types}

\textbf{Linearity} \rightarrow \textit{Data as resources}

\[\forall \lambda x.(x,x) : \tau \rightarrow \tau \times \tau \quad \forall \lambda x.\lambda y.x : \tau \rightarrow \sigma \rightarrow \tau \]

\textbf{Modalities} \rightarrow \textit{Code manipulations}

\[[\text{int}]\tau \quad \text{code can be copied and erased} \]
\[[k]\tau \quad \text{code can be used } k\text{-times} \]
\[[\text{secret}]\tau \quad \text{code cannot contain unclassified info} \]
Graded Modal Types

Types \(\tau ::= \ldots \mid \tau \rightarrow \tau \mid [j] \tau \)

Values \(a ::= \ldots \mid \text{box } a \)

Expressions \(e ::= \ldots \mid \text{let box } x = a \text{ in } e \)

Grade algebra \((J, \leq, +, *, 0, 1, \infty)\)

S4 modality \([j] \tau\)

Example

<table>
<thead>
<tr>
<th>Resource Usage</th>
<th>Security</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>secret</td>
<td>([(0, \infty], \leq, +, *, 0, 1))</td>
</tr>
<tr>
<td>aff</td>
<td>public</td>
<td></td>
</tr>
<tr>
<td>dead</td>
<td>lin</td>
<td></td>
</tr>
</tbody>
</table>
Graded Modal Types

Types
\[\tau ::= \ldots | \tau \rightarrow \tau | [j] \tau \]

Values
\[a ::= \ldots | \text{box } a \]

Expressions
\[e ::= \ldots | \text{let box } x = a \text{ in } e \]

Grade algebra
\[(\mathcal{J}, \leq, +, *, 0, 1, \infty) \]

S4 modality
\[[j] \tau \]

Graded Judgements
\[x_1 : j_1 \tau_1, \ldots, x_n : j_n \tau_n \vdash e : \tau \]

\(e \) manipulates \(x_i \) according to \(j_i \)
Program Equivalence
Goal. Identify programs with the same operational and intensional behaviour
Program Equivalence

Goal. Identify programs with the same operational and intensional behaviour

Operational Semantics

Programs evaluate to values: $e \Downarrow a$

$$(\lambda x.e)a \mapsto e[x := a]$$

$$\vdots$$

let box $x = (\text{box } a)$ in $e \mapsto e[x := a]$
Program Equivalence

Goal. identify programs with the same operational and intensional behaviour

Q. How to capture intensionality?
Program Equivalence

Goal. Identify programs with the same operational and intensional behaviour.

Q. How to capture intensionality?

<table>
<thead>
<tr>
<th>Extensional PE</th>
<th>Intensional PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e R e'$</td>
<td>$w \models e R e'$</td>
</tr>
<tr>
<td>$R \subseteq \text{Exp} \times \text{Exp}$</td>
<td>$R : W \rightarrow \mathcal{P}(\text{Exp} \times \text{Exp})$</td>
</tr>
<tr>
<td>Relations</td>
<td>Relations over possible worlds</td>
</tr>
</tbody>
</table>
Program Equivalence

Goal. identify programs with the same operational and intensional behaviour

Q. How to capture intensionality?

- **Extensional PE**
 - $e R e'$
 - $R \subseteq \text{Exp} \times \text{Exp}$
 - Relations

- **Intensional PE**
 - $w \vdash e R e'$
 - $R : W \rightarrow \mathcal{P} (\text{Exp} \times \text{Exp})$
 - Relations over possible worlds

Possible worlds = Monoidal preorder $(W, \leq, \bullet, \varepsilon)$

Semantics substructural logic (Urquhart, 1972; Routley & Meyer, 1973)
Categories of Relations

Category W-Rel

- Objects: X, Y, \ldots
- Arrows: $R : (W, \leq) \rightarrow (\mathcal{P}(X \times Y), \subseteq)$
Goal. Define notions of equivalence

• Contextual/CIU equivalence
• Logical relations (Abel & Bernardy, 2020)
• Applicative bisimilarity
Applicative Bisimilarity

Goal. Define notions of equivalence
- Contextual/CIU equivalence
- Logical relations (Abel & Bernardy, 2020)
- Applicative bisimilarity

Applicative Bisimilarity (Abramsky, 1990)

Idea. \(\lambda \)-terms are functions

\[
f = g \iff \forall x. f(x) = g(x)
\]

\[
\lambda x. e \simeq \lambda x. e' \iff \forall a. e[x := a] \simeq e'[x := a]
\]

Solution. Coinduction
Applicative Bisimilarity

Applicative Bisimilarity (Abramsky, 1990)
The largest symmetric $R \subseteq \text{Exp} \times \text{Exp}$ s.t.

\[

e \, R \, e' \quad \text{and} \quad e \Downarrow a \quad \Rightarrow \quad e' \Downarrow a' \quad \text{and} \quad a \, R \, a'
\]

\[

\lambda x.e \, R \, \lambda x.e' \quad \Rightarrow \quad \forall a. \, e[x := a] \, R \, e'[x := a]
\]
Applicative Bisimilarity

Applicative Bisimilarity (Abramsky, 1990)
The largest symmetric \(R \subseteq \text{Exp} \times \text{Exp} \) s.t.

\[
e R e' \text{ and } e \Downarrow a \implies e' \Downarrow a' \text{ and } a R a' \\
\lambda x. e R \lambda x. e' \implies \forall a. e[x := a] R e'[x := a]
\]

Modal Applicative Bisimilarity
The largest symmetric \(W \)-relation \(R \) s.t.

\[
w \models e R e' \text{ and } e \Downarrow a \implies e' \Downarrow a' \text{ and } w \models a R a' \\
w \models \lambda x. e R \lambda x. e' \implies \forall a. w \models e[x := a] R e'[x := a] \\
w \models \text{box } a R \text{ box } a' \implies ???
\]
Idea. Modal types act on possible worlds
Modal Applicative Bisimilarity

Idea. Modal types act on possible worlds

Sensitivity

\[\varepsilon \vdash \text{box } a \simeq \text{box } a' : [k]\tau \iff \exists \delta. \varepsilon \succeq k\delta. \text{ and } \delta \vdash a \simeq a' : \tau \]
Modal Applicative Bisimilarity

Idea. Modal types act on possible worlds

Sensitivity
\[\varepsilon \vdash \text{box } a \simeq \text{box } a' : [k]\tau \iff \exists \delta. \varepsilon \geq k\delta. \text{ and } \delta \vdash a \simeq a' : \tau \]

Security
- **public** \[\vdash \text{box } a \simeq \text{box } a' : [\text{secret}]\tau \iff \text{always} \]
- **secret** \[\vdash \text{box } a \simeq \text{box } a' : [\text{secret}]\tau \iff \text{secret} \vdash a \simeq a' : \tau \]
Modal Applicative Bisimilarity

Idea. Modal types act on possible worlds

Sensitivity

$$\varepsilon \models \text{box } a \simeq \text{box } a' : [k]\tau \iff \exists \delta. \varepsilon \geq k\delta. \text{ and } \delta \models a \simeq a' : \tau$$

Security

- **public** \(\models\) box \(a \simeq a' : [\text{secret}]\tau \iff \text{always}
- **secret** \(\models\) box \(a \simeq a' : [\text{secret}]\tau \iff \text{secret } \models a \simeq a' : \tau

Q. How do we generalise these constructions?
Relation Lifting

\[\tau \xrightarrow{PE} \sim_{\tau} \]
Relation Lifting

\[
\begin{array}{c}
\tau \\
F \\
F(\tau)
\end{array}
\xrightarrow{PE}
\xrightarrow{\sim_\tau}
\]
Relation Lifting

\[\tau \xrightarrow{PE} \sim_{\tau} \]

\[F \xrightarrow{PE} F(\tau) \xrightarrow{F^\#} F^\#(\sim_{\tau}) = \sim_{F(\tau)} \]

Moral. Need ways to **extend** constructions on types/sets to relations.
Lax Extension (Barr, 1970; Thijs, 1996)

A lax extension of $F : \text{Set} \rightarrow \text{Set}$, is a mapping $\Gamma : \mathcal{W}-\text{Rel}(X, Y) \rightarrow \mathcal{W}-\text{Rel}(F(X), F(Y))$ s.t.

- $\Gamma(R) ; \Gamma(S) \subseteq \Gamma(R; S)$
- $F(f) \subseteq \Gamma(f)$
- $F(f)^T \subseteq \Gamma(f^T)$
- $R \subseteq S \implies \Gamma(R) \subseteq \Gamma(S)$

Functor

\[
\begin{array}{c}
\text{Set} \\
\downarrow F \\
\text{Set}
\end{array}
\]

Lax Functor

\[
\begin{array}{c}
\mathcal{W}-\text{Rel} \\
\downarrow \Gamma^\#(F) \\
\mathcal{W}-\text{Rel}
\end{array}
\]
Q. What about modal types $[j] \tau$?
Q. What about modal types $[j] \tau$?

Modal types $= \text{Graded comonadic lax extension of the identity comonad}$

- Graded comonadic $= \text{graded S4 modalities}$
- Identity $= \text{act on possible worlds only}$
Relation Lifting

Graded Comonadic Lax Extension

A graded comonadic lax extension is a \(J \)-indexed family of lax extensions \(\Delta_j : W\text{-Rel}(X, Y) \to W\text{-Rel}(X, Y) \) antitone in \(J \) s.t.

\[
\Delta_1(R) \subseteq R \\
\Delta_{j \star k}(R) \subseteq \Delta_j(\Delta_k(R)) \\
\Delta_j(R) \otimes \Delta_j(S) \subseteq \Delta_j(R \otimes S) \\
\Delta_{j+k}(R) \subseteq \text{dup}^T; (\Delta_j(R) \otimes \Delta_j(S)); \text{dup}
\]

Identity Comonad

\[
\begin{bmatrix}
\text{Set} \\
\downarrow \text{ID} \\
\text{Set}
\end{bmatrix}
\]

Graded Lax Monoidal Comonad

\[
\begin{bmatrix}
W\text{-Rel} \\
\downarrow \Delta^#(\text{ID}) \\
W\text{-Rel}
\end{bmatrix}
\]
Modal Applicative Bisimilarity

The **largest** symmetric \(W \)-relation \(R \) s.t.

\[
 w \models e \mathrel{R} e' : \tau \text{ and } e \Downarrow a \quad \Rightarrow \quad e' \Downarrow a' \text{ and } w \models a \mathrel{R} a' : \tau
\]

\[
 w \models f \mathrel{R} f' : \tau \rightarrow \tau' \quad \Rightarrow \quad \forall a. \ w \models fa \mathrel{R} f'a : \tau'
\]

\[
 w \models \text{box } a \mathrel{R} \text{box } a' : [j] \tau \quad \Rightarrow \quad w \models a \Delta_j(R) a' : \tau
\]
Modal Applicative Bisimilarity

The **largest** symmetric W-relation R s.t.

\[
\begin{align*}
\text{let } w &\vdash e \; R \; e' : \tau \text{ and } e \Downarrow a \implies e' \Downarrow a' \text{ and } w \vdash a \; R \; a' : \tau \\
w &\vdash f \; R \; f' : \tau \implies f a \; R \; f' a : \tau' \\
w &\vdash \text{box } a \; R \; \text{box } a' : [j] \tau \implies w \vdash a \; \Delta_j(R) \; a' : \tau
\end{align*}
\]

Theorem (Compositionality)

Modal applicative bisimilarity is **compositional**

\[
\begin{align*}
\text{let } &x : j \; \tau \vdash e, e' : \tau' \quad \nu \vdash e \simeq e' \quad w \vdash a \; \Delta_j(\simeq) \; a' : \tau \\
w \bullet \nu &\vdash e[x := a] \simeq e'[x := a'] : \tau'
\end{align*}
\]
Metric Preservation (Reed & Pierce, 2010)

\[J = [0, \infty] = W \]

\[
\frac{x :k \tau \vdash f : \tau' \quad \varepsilon \vdash a \simeq a' : \tau}{k\varepsilon \vdash f[x := a] \simeq f[x := a'] : \tau'}
\]

Non-Interference (Abadi et al., 1999)

\[J = \{public \leq secret\} = W \]

\[
x :secret \tau \vdash f : \tau' \quad \text{&} \quad a, a' : \tau \Rightarrow public \vdash f[x := a] \simeq f[x := a'] : \tau'
\]
Modal Reasoning = Metric Reasoning, via Lawvere
Program Distance

Relations

\[e \simeq e' \]

Equivalence

W-relations

\[w \models e \simeq e' \]

Intensional equivalence
Program Distance

<table>
<thead>
<tr>
<th>Relations</th>
<th>\mathcal{W}-relations</th>
<th>Distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e \simeq e'$</td>
<td>$w \vdash e \simeq e'$</td>
<td>$\delta(e, e') = \varepsilon$</td>
</tr>
<tr>
<td>Equivalence</td>
<td>Intensional equivalence</td>
<td>Pseudometric</td>
</tr>
</tbody>
</table>
Program Distance

<table>
<thead>
<tr>
<th>Relations</th>
<th>\mathcal{W}-relations</th>
<th>Distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e \simeq e'$</td>
<td>$\mathcal{W} \models e \simeq e'$</td>
<td>$\delta(e, e') = \varepsilon$</td>
</tr>
</tbody>
</table>

Equivalence Intensional equivalence Pseudometric

Goal. Intensional equivalence \equiv Program distance

- Solid theory of program distance
- Combined effects and coeffects
From Equivalences to Distances

<table>
<thead>
<tr>
<th>Relations</th>
<th>Distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e \sim e'$</td>
<td>$\delta(e, e') = \varepsilon$</td>
</tr>
<tr>
<td>${false, true}</td>
<td>[0, \infty]</td>
</tr>
</tbody>
</table>

Equivalence Pseudometric
From Equivalences to Distances

<table>
<thead>
<tr>
<th>Relations</th>
<th>Distances</th>
<th>Quantale-relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e \simeq e'$</td>
<td>$\delta(e, e') = \varepsilon$</td>
<td>$\delta(e, e') = v$</td>
</tr>
<tr>
<td>${false, true}$</td>
<td>$[0, \infty]$</td>
<td>(V, \leq, \otimes, k)</td>
</tr>
<tr>
<td>Equivalence</td>
<td>Pseudometric</td>
<td>V-equivalences</td>
</tr>
</tbody>
</table>

(Generalised) metric spaces as enriched categories (Lawvere, 1973)

Quantale (Rosenthal, 1990)
A complete lattice (V, \leq) with a monoid structure (V, \otimes, k)

$$v \otimes \bigvee_i u_i = \bigvee_i (v \otimes u_i)$$
$$\bigvee_i v_i \otimes u = \bigvee_i (v_i \otimes u)$$
Quantale-relations

Example

<table>
<thead>
<tr>
<th>Boolean</th>
<th>Lawvere</th>
<th>Strong Lawvere</th>
</tr>
</thead>
<tbody>
<tr>
<td>({false, true}, \leq, \land, \top)</td>
<td>([0, \infty], \geq, +, 0)</td>
<td>([0, \infty], \geq, \text{max}, 0)</td>
</tr>
</tbody>
</table>

- 3-element chain: \{\bot, k, \top\}
- Powerset: \mathcal{P}(X)
- Left cont. distributions: \(f : [0, \infty] \rightarrow [0, 1]\)

Example

- Monotone \(W\)-predicates: \(p : (W, \leq, \bullet, \varepsilon) \rightarrow (2, \leq)\)
Category V-Rel

- **Objects:** X, Y, \ldots
- **Arrows:** $\alpha : X \times Y \rightarrow V$

Identity

\[
l(x, x) = k, \quad l(x, y) = \bot
\]

Composition

\[
(\alpha; \beta)(x, z) = \bigvee_y \alpha(x, y) \otimes \beta(y, z)
\]
Quantale-relations

Category V-Rel

- Objects: X, Y, \ldots
- Arrows: $\alpha : X \times Y \to V$

Identity

$I(x, x) = k, I(x, y) = \bot$

Composition

$(\alpha; \beta)(x, z) = \bigvee_y \alpha(x, y) \otimes \beta(y, z)$

$(\alpha; \alpha)(x, z) \leq \alpha(x, z) \iff \inf_y \alpha(x, y) + \alpha(y, z) \geq \alpha(x, z) \iff \text{TI}$

- Boolean
- Transitivity
- Equivalence

- Lawvere
- Triangle Inequality

- Strong Lawvere
- Strong TI
- Ultra Pseudometric
Bisimilarity Distance

Rich literature on V-distances

- Monoidal topology (D. Hofmann et al., 2014)
- Effectful applicative bisimilarity (Gavazzo, 2018)
Bisimilarity Distance

Rich literature on V-distances

- Monoidal topology (D. Hofmann et al., 2014)
- Effectful applicative bisimilarity (Gavazzo, 2018)

Bisimilarity Distance δ

The largest V-relation α s.t.

\[
\alpha_{\tau \rightarrow \tau'}(\lambda x.f, \lambda x.f') \leq \bigwedge_a \alpha_\tau(f[x := a], f'[x := a])
\]

\[
\alpha_{[j]_\tau}(\text{box } a, \text{box } a') \leq \Delta_j(\alpha_\tau)(a, a')
\]
Bisimilarity Distance

Comonadic Lax Extension

\[\Delta_j : \text{V-Rel}(X, Y) \to \text{V-Rel}(X, Y) \]

Main Example

\[V = \mathcal{J} = [0, \infty] \]

\[\Delta_j(\alpha)(x, y) = j \cdot \alpha(x, y) \]

Non-expansive

\[
\begin{array}{c}
X \xrightarrow{f} Y \\
\alpha \downarrow \quad \leq \quad \downarrow \beta \\
X \xrightarrow{f} Y
\end{array}
\]

Lipschitz-continuous

\[
\begin{array}{c}
X \xrightarrow{f} Y \\
\Delta_j(\alpha) \downarrow \quad \leq \quad \downarrow \beta \\
X \xrightarrow{f} Y
\end{array}
\]
Theorem (Abstract Metric Preservation)

For $x : j \vdash e, e' : \tau'$ and $\vdash a, a' : \tau$, we have:

$$\Delta_j(\delta)(a, a') \otimes \delta(e, e') \leq \delta(e[x := a], e'[x := a'])$$

Theorem

For $V = (W, \leq, \bullet, \varepsilon) \rightarrow (2, \leq)$,

AMP \implies Compositionality
Conclusion
Summing Up

Intensional program equivalence for graded modal types

Compositionality theorem for modal applicative bisimilarity

Same results for other equivalences

🔗 **Böhm tree-like equivalences**

\[w \vdash BT(e) \equiv BT(e') \]

Intensional equality as program distance

🔗 **Abstract Metric Preservation**
What do we gain from AMP?
What do we gain from AMP? Combined effects and coeffects
Summing Up

What do we gain from AMP? **Combined effects and coeffects**

Add *algebraic operations* (random, print, lookup, . . .) and *monads*

\[(\ell := 2; !\ell + 3) \oplus_\frac{1}{3} (\ell := 3; !\ell - 1)\]
What do we gain from AMP? **Combined effects and coefficients**

Add **algebraic operations** (random, print, lookup, ...) and **monads**

\[(\ell := 2; !\ell + 3) \oplus \frac{1}{3} (\ell := 3; !\ell - 1)\]

Bisimilarity distance using **monadic lax extension**

Monadic Lax Extension
\[
\Gamma : V\text{-Rel}(X, Y) \rightarrow V\text{-Rel}(T(X), T(Y))
\]

Lax distributive law
\[
\Delta_r \circ \Gamma \subseteq \Gamma \circ \Delta_r
\]

Abstract metric preservation theorem

