
Article Submitted to Journal of Symbolic Computation

Comparing Approaches to the Exploration

of the Domain of Residue Classes

Andreas Meier1, Martin Pollet�1,2 and Volker Sorgey2

1Fachbereich Informatik, Universit�at des Saarlandes, Germany,

ameierjpollet@ags.uni-sb.de
http://www.ags.uni-sb.de/~ameierjpollet

2School of Computer Science, University of Birmingham, UK,

M.PolletjV.Sorge@cs.bham.ac.uk http://www.cs.bham.ac.uk/~mxpjvxs

Abstract

We report on a case study on combining proof planning with computer
algebra systems. We construct proofs for basic algebraic properties of
residue classes as well as for isomorphisms between residue classes us-
ing di�erent proof techniques, which are implemented as strategies in a
multi-strategy proof planner. The search space of the proof planner can
be drastically reduced by employing computations of two computer al-
gebra systems during the planning process. To test the e�ectiveness of
our approach we carried out a large number of experiments and also com-
pared it with some alternative approaches. In particular, we experimented
with substituting computer algebra by model generation and by proving
theorems with a �rst order equational theorem prover instead of a proof
planner.

1. Introduction

We report on a case study that combines proof planning with computer alge-
bra systems (CAS). We classify residue class sets over the integers together with
given binary operations in terms of their basic algebraic properties and addition-
ally into sets of isomorphic structures. That is, we examine structures such as
(Z3; �+); (Z5nf�05g; ��); (f�16; �36; �56g; ��); : : : (here �16 denotes the congruence class
1 modulo 6) whether they are groups, monoids, semi-groups, etc. and which of
them are isomorphic to each other.

�The author's work was supported in parts by the `Landesgraduiertenf�orderung des Saar-
landes' and by the Calculemus IHP-RTN EC project, contract code HPRN-CT-2000-00102.

yThe author's work was supported by the `Studienstiftung des Deutschen Volkes'.

1



Meier, Pollet, Sorge: Comparing Approaches 2

The original motivation of our work was to provide the data for interactive
algebra courses inside a tutor system using the 
mega theorem proving envi-
ronment (Benzm�uller et al., 1997). For tutoring purposes it is necessary to have
a large class of examples and counter-examples available to illustrate the di�er-
ence of notions like group, monoid etc. Moreover, it is necessary to have proofs in
human-oriented reasoning style using di�erent proof techniques. This suggested
employing multi-strategy proof planning as a tool for constructing proofs since it
allows easy modelling of di�erent human-oriented proof techniques by di�erent
strategies. Moreover, proof planning enables us to exploit the power of CASs in
a sound way (Kerber et al., 1998; Sorge, 2000) in order to guide and shorten the
proof process.
The case study essentially consists of three parts: (1) The implementation of

a set of proof planning strategies that realize di�erent proof techniques for the
residue class domain. Thereby we were interested in examining basic algebraic
properties of given residue class structures in order to automatically classify them
into terms of the algebraic structure they form. Furthermore, structures of the
same type and cardinality are then classi�ed into sets of isomorphic structures.
The implemented proof planning strategies employ the computations of CASs
to varying degrees to ease the planning process. (2) For testing the e�ectiveness
of the implemented machinery we conducted a large number of experiments
by automatically and systematically classifying residue class structures. Finally,
(3) in order to verify the usefulness of the combination of proof planning and
computer algebra we also compared our approach with alternative techniques.
In particular, we experimented with substituting computer algebra by model
generation and by proving theorems with a �rst order equational theorem prover
instead of a proof planner. The former turned out to be quite e�ective and
can fruitfully complement the use of computer algebra. The latter proved to be
applicable for constructing most of the required proofs but is less robust in a large
case study than our combined proof planning and computer algebra approach.
Part (1) and (2) of the case study were reported in (Meier and Sorge, 2001)

and (Meier et al., 2001), where the former was concerned with proofs of simple
algebraic properties and the latter with the isomorphism proofs. For an extensive
report on both, including a detailed presentation of the constructed proofs, we
refer the reader to (Meier et al., 2000). In this paper we present a summary of
the overall case study including a detailed report of the results of part (3).
The paper is organized as follows: We �rst give a brief overview of multi-

strategy proof planning in the 
mega system and the integration of computer
algebra with proof planning. Section 3 contains a summary of the exploration
of the residue class domain with the combined power of proof planning and
computer algebra. Section 4 and 5 report on the comparison of our original
proof planning approach with alternative techniques. In particular the former is
concerned with the substitution of computer algebra by model generation while
the latter compares the proof planning approach with traditional automated
theorem proving.



Meier, Pollet, Sorge: Comparing Approaches 3

2. Proof Planning and Computer Algebra

In this section we give a brief introduction to multi-strategy proof planning
and to the integration of computer algebra into proof planning. More detailed
introductions can be found in (Melis and Meier, 2000) and (Kerber et al., 1998;
Sorge, 2000), respectively.

2.1. Multi-Strategy Proof Planning

Proof planning (Bundy, 1988) considers mathematical theorems as planning
problems where an initial partial plan is composed of the proof assumptions

and the theorem as open goal. A proof plan is then constructed with the help of
abstract planning steps, called methods, that are essentially partial speci�cations
of tactics known from tactical theorem proving. In order to ensure correctness,
proof plans have to be executed to generate a sound calculus level proof.
In the 
mega system (Benzm�uller et al., 1997) the traditional proof planning

approach is enriched by incorporating mathematical knowledge into the plan-
ning process (see (Melis and Siekmann, 1999) for details). That is, methods can
encode general proving steps as well as knowledge particular to a mathematical
domain. Moreover, control rules provide the possibility to introduce mathemati-
cal knowledge on how to proceed in the proof planning process by specifying how
to traverse the search space. Depending on the mathematical domain or proof
situation, they can inuence the planners behavior at choice points (e.g., which
goal to tackle next or which method to apply next). 
mega's new proof planner,
Multi (Melis and Meier, 2000), also allows the speci�cation of di�erent planning
strategies to control the overall planning behavior. Strategies implement proof
techniques by specifying particular sets of methods and control rules. Thus they
allow tackling the same problem in di�erent ways. In case more than one strategy
is applicable to one problem,Multi can reason about which strategy to employ
and also switch strategies during one proof attempt. In particular, the planner
can backtrack from applied strategies and thus perform search on the level of
strategies.

2.2. Employing Computer Algebra in Proof Planning

We employ symbolic calculations to guide and simplify the search for proof plans
when proof planning in the domain of residue classes. In particular, we use the
mainstream CAS Maple (Redfern, 1999) and Gap (GAP, 1998), a system spe-
cialized on group theory. In this paper we are not concerned with the technical
side of the integration since we exploit previous work, in particular (Kerber
et al., 1998), that presents the integration of computer algebra into proof plan-
ning, and (Sorge, 2000), that exempli�es how the correctness of certain limited
computations of a large-scale CAS such asMaple can be guaranteed within the
proof planning framework. Instead we concentrate on the cooperation between
the systems in the context of exploring residue class properties.



Meier, Pollet, Sorge: Comparing Approaches 4

We use symbolic calculations in two ways: (1) To guide the proof planner and
to prune the search space by computing hints with control rules. (2) To shorten
and simplify the proofs by callingMaple within the application of a method to
solve equations. As side-e�ect both cases can restrict possible instantiations of
meta-variablesz.
(1) is implemented, for instance, in the control rule select-instance. The

rule is triggered after the decomposition of an existentially quanti�ed goal which
results in the introduction of a meta-variable as substitute for the actual witness
term. After an existential quanti�er is eliminated, the control rule computes
a hint with respect to the remaining goal that is used as a restriction for the
introduced meta-variable. For instance, when showing the existence of a unit
element e in (Z2; �+), the control rule supplies a hint as to what e might be (i.e.,
�02). To obtain suitable hints, select-instance sends corresponding queries to
Gap and Maple. If hints can be computed, the meta-variables are instantiated
before the proof planning proceeds. However, the instantiations suggested by
select-instance are treated as a hint by the proof planner; that is, they have
to be veri�ed during the subsequent proof planning process. In case the proving
attempt fails for a particular instantiation, Multi backtracks and tries to �nd
an appropriate instantiation by crude search.
(2), the use of calculations, is realized within the Solve-Equation method. Its

purpose is to justify an equational goal usingMaple and, if necessary, to instan-
tiate meta-variables. In detail, it works as follows: If an open goal is an equation,
Maple's function solve is applied to check whether the equality actually holds.
Any meta-variables contained in the equation are considered as the variables
the equation is to be solved for and they are supplied as additional arguments
for solve. In case the equation involves modulo functions with the same factor
on both sides, Maple's function msolve is used instead of solve. If Maple

can solve the equation, the method is applied and possible meta-variables are
instantiated accordingly. The computation is then considered correct for the rest
of the proof planning process. However, once the proof plan is executedMaple's
computation is expanded into low level logic derivations to check its correctness.
This is done with the help of a small, self-tailored CAS that provides detailed in-
formation on its computations in order to construct the expansion. This process
is extensively described in (Sorge, 2000).

3. Proof Planning in the Residue Class Domain

In this section we introduce our concrete case study, the exploration of the residue
class domain. We are concerned with classifying given structures (1) in terms
of the algebraic category (group, monoid, etc.) they form, and (2) in classes
of isomorphic structures. During both classi�cation processes, proof obligations
have to be discharged, which can be done with several proof planning strategies.

zMeta-variables are place-holders for terms whose actual form is computed at a later stage
in the proof search.



Meier, Pollet, Sorge: Comparing Approaches 5

To test the e�ectiveness of our techniques we applied them to a large testbed of
examples.
This section starts with a general introduction to the residue class domain and

the problems we are dealing with. The sections 3.2 and 3.3 give a short overview
of the proof planning strategies for proving simple algebraic properties and iso-
morphism or non-isomorphism problems. We shall only give a brief overview of
each strategy and sometimes illustrate them with a small example. For a detailed
account of the strategies we refer the reader to (Meier et al., 2000). However,
we shall point out the various uses of computer algebra in the proof planning
and classi�cation process. To conclude the section we give a summary of the
conducted experiments and discuss their results.

3.1. Introduction to the Residue Class Domain

A residue class set over the integers is either the set of all congruence classes
modulo an integer n, i.e., Zn, or an arbitrary subset of Zn. Concretely, we are
dealing with sets of the form Z3;Z5;Z3nf�13g;Z5nf�05g, f�16; �36; �56g; : : : where �16
denotes the congruence class 1 modulo 6. If c is an integer we write also cln(c)
for the congruence class c modulo n. A binary operation Æ on a residue class set
is given in �-function notation. Æ can be of the form �xy x, �xy y, �xy c where c
is a constant congruence class (e.g., �13), �xy x�+y, �xy x��y, �xy x��y, where �+,
��, �� denote addition, multiplication, and subtraction on congruence classes over
the integers, respectively. Furthermore, Æ can be any combination of the basic
operations with respect to a common modulo factor, e.g., �xy (x�+�13) ��(y �+�23).
We often abbreviate the operations �xy x�+y, �xy x��y, �xy x��y by �+, ��, ��,
respectively.
Given a residue class set RSn modulo n and a binary operation Æ with respect

to the same modulo factor n, we try to establish or to refute the following
properties:

1. Closure: RSn is closed under Æ.

2. Associativity: RSn is associative with respect to Æ.

3. Unit element: There exists a unit element e with respect to Æ in RSn.

4. Inverses: Every element in RSn has an inverse element with respect to Æ
and the unit element e.

5. Divisors: For every two elements a; b 2 RSn there exist two corresponding
divisors x; y 2 RSn such that a Æ x = b and y Æ a = b holds.

6. Abelian: RSn is commutative with respect to Æ.

For two given structures (RS1

n; Æ
1) and (RS2

m; Æ
2) we are also interested in

whether they are isomorphic or not. Therefore, we show whether or not there
exists a function h:(RS1

n; Æ
1) ! (RS2

m; Æ
2) such that h is injective, surjective,

and homomorphic.x

xObserve that we avoid confusion between indices and modulo factors by writing indices
as superscripts, except in indexed variables such as xi; yj as they are clearly distinct from
congruence classes of the form cli(x).



Meier, Pollet, Sorge: Comparing Approaches 6

Properties, or their refutations, are formalized in 
mega's higher order lan-
guage. For instance the closure concept is formalized as 8x:RSn 8y:RSn (x Æ y) 2
RSn and its refutation as 9x:RSn 9y:RSn (x Æ y) 62 RSn. Here the variables x and
y are of sort RSn; that is, the quanti�ers range over the �nite domain RSn.

3.2. Classi�cation wrt. Basic Algebraic Properties

We are interested primarily in classifying residue class sets over the integers
and given binary operations in terms of what algebraic structure they form.
We automatically classify structures of the form (RSn; Æ) in terms of magma
(also called groupoid) (property 1 holds), semi-group (1+2), monoid (1+2+3),
quasi-group (1+5), loop (1+5+3), or group (1+2+3+4){ and whether they are
Abelian. To do so, the single properties are successively checked in two steps:
First we compute whether or not a property is likely to hold for a given structure.
Then an appropriate proof obligation is constructed and discharged byMulti. If
Multi fails to prove the given problem it tries to prove the respective negation.
Only after a valid proof plan is constructed is the next property tested. CASs are
used in both testing and proving phase: for the computation of the likely answer
and while discharging proof obligations to guide the proof planning process.

3.2.1. Testing Basic Properties

The �rst property we have to check is whether the given structure is actually
closed under the operation. This is done by examining a multiplication table
that is constructed in 
mega. If the structure is closed the multiplication ta-
ble is passed to Gap for testing the associativity, unit element, inverses and
Abelian properties. That is, Gap is asked whether a property holds wrt. the
given multiplication table. Since there is no appropriate command in Gap to
check the divisors property, this test is again done in 
mega using the original
multiplication table.

3.2.2. Discharging Proof Obligations with Multi

For discharging proof obligations we have implemented three di�erent proof tech-
niques with strategies in Multi, which use symbolic computations to a varying
degree.

TryAndError The simplest strategy is TryAndError, which performs a
na��ve exhaustive case analysis. This is possible since we are in a �nite domain
and can always enumerate all possible cases. The case analysis is conducted with
respect to the quanti�cation of the problem at hand. For universally quanti�ed
formulas where the variable ranges over the residue class set, a case split on
all elements of the set is performed. Then the resulting property is proved for
every single element separately. For existentially quanti�ed goals all possible

{Naturally property 5 holds for a group as well.



Meier, Pollet, Sorge: Comparing Approaches 7

instantiations for the quanti�ed variable are successively checked. At this point
we can prune the search with hints from a CAS.
Instead of blindly testing all possible instantiations for the existentially quanti-

�ed variable and backtracking if necessary, Multi inserts a meta-variable whose
instantiation can be suggested with a hint from the select-instance control
rule (see section 2.2). The possible instantiations are computed by a hint system
in 
mega, which employs some routines of 
mega as well as the CASs Maple

and Gap. For instance, Gap is employed to compute the unit element and in-
verses for single elements while an 
mega routine computes possible divisors.
The hint system also provides counter examples if a property has to be refuted.
It can compute, for example, a pair of elements for which a given structure is
not closed. In case a counter example for associativity is needed, Maple is used
to compute a particular solution for the associativity equation. If such a non-
general solution exists it is exploited to determine a triple of elements for which
associativity does not hold. The procedure for commutativity is similar. The hint
system is able to provide hints for all existentially quanti�ed variables occurring
in proofs of basic properties of residue classes.
As an example, consider the proof that (Z2; �+) has inverses with respect to

the unit element �02: 8x:Z2 9y:Z2 (x�+y = �02) ^ (y �+x = �02). First, the universally
quanti�ed goal is reduced to the two goals 9y:Z2 (�02 �+y=�02) ^ (y �+�02=�02) and
9y:Z2 (�12 �+y=�02) ^ (y �+�12=�02) corresponding to a case split over the range of
the universally quanti�ed variable x 2 Z2; that is, x = �02 or x = �12. For both
goals the correct instantiation of the variable y (�02 and �12, respectively) is then
computed with Gap.

EquSolve This strategy employs as much as possible equational reasoning.
Instead of checking the validity of the statements for all possible cases like
TryAndError, EquSolve tries to solve occurring equations in a general way with
the Solve-Equation method. Universally quanti�ed variables are replaced by
constants, while existentially quanti�ed variables are replaced by meta-variables.
Via Solve-Equation the strategy then employs Maple to check the universal
validity of the equation. In case the equation contains meta-variables, Maple

tries to compute an appropriate instantiation, such that the equation is univer-
sally valid. The meta-variables are subsequently instantiated in the proof.
Considering again the proof of the inverse property of (Z2; �+), we obtain the

equations cl2(c) �+cl2(mv) = �02 and cl2(mv) �+cl2(c) = �02, where c is a constant
and mv is a meta-variable. When applied via Solve-Equation, Maple's al-
gorithm msolve returns a general solution for mv, namely mv = c. Hence the
equations can be closed by Solve-Equation.

ReduceToSpecial This last strategy tries to tackle new problems by ap-
plying already known theorems from 
mega's knowledge-base. The application
of a known theorem can either prove a goal directly or can reduce the goal to



Meier, Pollet, Sorge: Comparing Approaches 8

subgoals that can then be tackled by other theorems. The ReduceToSpecial

strategy does not depend on the help of a CAS.

3.3. Identifying Classes of Isomorphic Structures

The second part of our case study is concerned with checking isomorphisms
between two given residue class structures. Unlike the proof techniques for sim-
ple algebraic properties presented in the preceding section, which were rather
straightforward, to prove whether two residue class structures are isomorphic or
not is more complicated. Although we can mainly reuse the strategies designed
for the simple properties they have to be partially interleaved. Again the check
whether two structures are isomorphic or not is done in two steps. First we per-
form a test computation that gives the likely answer. Then the corresponding
proof obligation is constructed and passed toMulti. Again in both phases CASs
are used.
In the following we are concerned to show isomorphism or non-isomorphism

only for two structures with the same cardinality. The case where two structures
of di�erent cardinality are involved can be trivially proved by Multi with the
application of a theorem stating that �nite sets of di�erent size are trivially not
isomorphic.

3.3.1. Testing for Isomorphisms

We test whether two given structures (RS1

n; Æ
1) and (RS2

m; Æ
2) are isomorphic

by computing a possible isomorphism mapping h:(RS1

n; Æ
1) ! (RS2

m; Æ
2) with

Maple. For the function h a system of equations is generated by instantiating
the homomorphism equation h(x Æ1 y) = h(x) Æ2 h(y) with all elements of the
residue class set RS1

n. This results in a set of equations h(cln(i) Æ
1 cln(j)) =

h(cln(i)) Æ
2 h(cln(j)) for all cln(i); cln(j) 2 RS1

n. When we take cln(k) to be the
result of cln(i) Æ

1 cln(j), we obtain a system of equations of the form h(cln(k)) =
h(cln(i)) Æ

2 h(cln(j)). In the remainder of the paper we call the resulting system
of equations the instantiated homomorphism equations. Now,Maple is asked to
give a solution for the corresponding system of equations xk = xi Æ

2 xj (where
h(cln(l)) becomes the variable xl) with respect to the modulo factor m using
Maple's function msolve. If Maple returns a set of solutions and we can �nd
one solution containing only elements from the integer set corresponding to RS2

m

with xi 6= xj for all i 6= j, we have a candidate for the isomorphism mapping.
For example, to test whether (Z2; �+) and (Z2; �xy x�+y �+�12) are isomorphic

we generate the corresponding set of instantiated homomorphism equations:
h(�02) = h(�02 �+�02) = h(�02) �+h(�02) �+�12; h(�12) = h(�02 �+�12) = h(�02) �+h(�12) �+�12;
h(�12) = h(�12 �+�02) = h(�12) �+h(�02) �+�12; h(�02) = h(�12 �+�12) = h(�12) �+h(�12) �+�12.

After replacing h(�02) by x0 and h(�12) by x1 we askMaple to give a solution for
the equations: x0 = x0+x0+1; x1 = x0+x1+1; x1 = x1+x0+1; x0 = x1+x1+1
wrt. the modulo factor 2. Maple's answer is: fx0 = 1; x1 = x1g, that is x0 = 1
and x1 can be both 0 or 1. Thus, one bijective function is h(�02) = �12, h(�12) = �02.



Meier, Pollet, Sorge: Comparing Approaches 9

3.3.2. Isomorphism Proofs with Multi

In this section we present how Multi plans isomorphism proofs. It employs
the same three strategies introduced in section 3.2.2, namely TryAndError,
EquSolve, and ReduceToSpecial. Contrary to the proofs of simple properties
of structures that could be solved in most cases within one strategy, for isomor-
phism proofs di�erent subproofs can be solved by di�erent strategies.

TryAndError When constructing an isomorphism proof TryAndError has
to search for a bijective homomorphism h among all existing mappings between
the two residue class structures involved. The mapping h is represented as a
pointwise de�ned function, where the image of each element of the domain is
explicitly speci�ed as an element of the codomain. The search can be abbreviated
by computing a pointwise isomorphism as a hint withMaple using the technique
described above.
As an example consider the proof that (Z2; �+) and (Z2; �xy x�+y �+�12) are iso-

morphic. There exist 4 possible pointwise functions h : Z2 �! Z2. The hint
computed with Maple is the function given in section 3.3.1, namely h(�02) =
�12; h(�12) = �02. The subsequent subproofs for the properties injectivity, surjectiv-
ity, and homomorphy of the pointwise de�ned function are then performed in the
regular fashion of the TryAndError strategy as already discussed in section 3.2.2.
Each of the subproofs has the complexity n2 where n is the cardinality of the

structures involved.k However, if no suitable hint can be computed there are
nn pointwise de�ned functions to check, which becomes infeasible already for
relatively small n.

EquSolve Isomorphism proofs can often be simpli�ed by computing a poly-
nomial that interpolates the pointwise de�ned isomorphic mapping. If an inter-
polation polynomial can be computed it is introduced into the proof instead of
the pointwise mapping. Then the EquSolve strategy has a chance to �nd the
subproofs for surjectivity and the homomorphism property by reducing these
subproblems to equations which might be solvable with the Solve-Equation

method. However, in the subproof for injectivity we have to show for each two
distinct elements that their images di�er, which cannot be concluded by equa-
tional reasoning. For the construction of the interpolation polynomial from a
given pointwise function we again employ Maple.
For our example problem that (Z2; �+) is isomorphic to (Z2; �xy x�+y �+�12) the

corresponding pointwise isomorphism mapping is h(�02) = �12; h(�12) = �02.Maple

computes the interpolation polynomial x ! (x + 1 mod 2) which is introduced
into the proof. The properties of injectivity, homomorphy, and surjectivity are
then shown for the polynomial. The subproofs of the latter two properties can
indeed be shown with the EquSolve strategy. Since the proof for injectivity

kThe proof of each of these properties results in formulas with two nested quanti�cations
ranging over sets of cardinality n. This results in n2 possible cases.



Meier, Pollet, Sorge: Comparing Approaches 10

cannot be constructed with EquSolve, Multi switches either to the strategy
ReduceToSpecial or TryAndError to prove this property.

ReduceToSpecial Like the proofs of simple algebraic properties the strat-
egy ReduceToSpecial can be applied to the overall problem directly. Moreover,
it can also be applied during the proof of one of the injectivity, surjectivity, or ho-
momorphy subgoals. In particular, it is used to exploit the simple mathematical
fact that in �nite domains surjectivity implies injectivity and vice versa. Usu-
ally Multi proves �rst the surjectivity subgoal; then ReduceToSpecial shows
the injectivity subgoal by applying the following theorem: A surjective mapping

between two �nite sets with the same cardinality is injective.

3.3.3. Non-Isomorphism Proofs

During the classi�cation process it is also necessary to prove that two given
structures are not isomorphic. To discharge this proof obligation we again use
the strategies ReduceToSpecial and TryAndError. Additionally, we have im-
plemented another strategy, NotInjNotIso, which is specialized on proving only
non-isomorphism problems. It constructs indirect proofs by showing that no
homomorphic mapping between the two given residue class structures can be
injective.

TryAndError Proving that two structures are not isomorphic to each other
means we have to show that all possible mappings between the structures are
not isomorphic. The TryAndError strategy performs an exhaustive case split by
introducing all possible instantiations for the mapping between the two struc-
tures involved, and proves for each that it is either not injective, not surjective,
or not a homomorphism. For non-isomorphism problems the strategy does not
employ help from a CAS. The application of this na��ve approach su�ers from
combinatorial explosion on the possibilities for the pointwise de�ned function.
For two structures whose sets have cardinality n we have to consider nn di�erent
possible functions.

ReduceToSpecial If two structures are isomorphic, they share the same
algebraic properties. Thus, in order to show that two structures are not iso-
morphic it suÆces to show that one particular property holds for one structure
but not for the other. 
mega's knowledge-base contains some theorems about
such properties that can be applied within the strategy ReduceToSpecial. For
instance, we have one theorem stating that, if for two structures (S1; Æ1) and
(S2; Æ2) there exists an element a 2 S1 with order n such that the order of every
element of S2 is di�erent from n, then the two structures are not isomorphic. The
ReduceToSpecial strategy can apply this theorem to reduce non-isomorphism
goals and then the TryAndError strategy takes over to complete the proof by
showing the resulting subgoals. During these proofs the TryAndError strategy
obtains hints by computing the orders of elements with Gap. For structures



Meier, Pollet, Sorge: Comparing Approaches 11

without a unit element there exists a similar theorem about the order of traces
of elements. The traces and their order are then likewise computed with Gap.
In contrast to employing TryAndError alone, proofs constructed with the com-

bination of TryAndError and ReduceToSpecial have only polynomial complex-
ity in the cardinality of the sets involved. Moreover, the search is reduced signif-
icantly by providing hints. But this technique is only applicable when the given
structures contain elements suitable for our purpose in the sense that either the
order of an element or the order of the trace of an element is not reected in the
other structure.

NotInjNotIso The strategy NotInjNotIso was implemented particularly
for non-isomorphism proofs. The idea is to show that for two structures (S1; Æ1)
and (S2; Æ2) there exist two distinct elements in S1 that are always mapped to the
same element in S2 under all possible homomorphisms. NotInjNotIso constructs
an indirect proof by �rst assuming that there exists a function h:S1 ! S2 which is
an isomorphism. Then h is an injective homomorphism and the set of instantiated
homomorphism equations h(x1Æ

1x2) = h(x1)Æ
2h(x2) is introduced into the proof.

The strategy then tries to �nd two elements c1; c2 2 S1 with c1 6= c2 such that
the equation h(c1) = h(c2) can be derived. This contradicts the assumption of
injectivity of h where h(c1) 6= h(c2) has to hold if c1 6= c2. Note, that the proof
is with respect to all possible homomorphisms h and we do not have to give a
particular mapping.
The search for appropriate c1 and c2 can be restricted if the hint system can

provide a suitable instantiation. To obtain these instantiations all solutions of the
set of instantiated homomorphism equations are computed with Maple. Then
the set of solutions is examined to see whether there is a pair c1 and c2 with
c1 6= c2, such that h(c1) = h(c2) holds in all solutions. If there is such a pair it is
provided as a hint. The proof is also shortened by applying the Solve-Equation
method, and thus Maple, to newly derived equations to test their validity.
As example, we prove that the non-Abelian quasi-groups (Z5; �xy (�25��x) �+y)

and (Z5; ��) are not isomorphic. Among the set of instantiated homomorphism
equations are the two equations (1) h(�35) = h(�05) ��h(�35), resulting from the
homomorphism equation with x1 = �05 and x2 = �35, and (2) h(�35) = h(�15) ��h(�15),
resulting from x1 = �15 and x2 = �15. A suitable choice for c1 and c2 is c1 = �05 and
c2 = �35 leading to NotInjNotIso trying to prove that h(�05) = h(�35). Applying
equation (1) to the right hand side yields h(�05) = h(�05) ��h(�35), which can be
further transformed to h(�05) = h(�05) ��(h(�15) ��h(�15)) applying equation (2). That
this equation holds in general can be shown with Maple.
NotInjNotIso can produce very short proofs even for structures with large

sets. However, constructing an appropriate sequence of equality substitutions
is the hard part of the proof. In fact, for problems with the same complexity
(i.e., problems involving structures of the same cardinality) the length of the
proofs can vary drastically. Moreover, the equational reasoning process does not
have to terminate. To overcome this dilemma we have successfully experimented



Meier, Pollet, Sorge: Comparing Approaches 12

with randomization and restart techniques (Meier, 2000) known from AI (Gomes
et al., 1998).

3.4. Discharging Proof Obligations Automatically

The described strategies can be chosen independently from each other, depend-
ing on what kind of proof is desired. However, when discharging proof obliga-
tions automatically the strategies are attempted in a predetermined order. The
idea is to try the generally most eÆcient strategies �rst and end with the most
reliable one. Moreover, not all strategies are equally applicable to all problems.
While the TryAndError strategy is applicable to all possible occurring problems,
EquSolve can be applied only to those problems that can be reduced to equa-
tions. In particular, it cannot be applied to refute properties or to show closure.
Moreover, it sometimes fails even for equational problems when Maple returns
facts useless in our context (e.g., a term involving a rational number). Although
the ReduceToSpecial strategy can theoretically be applied to all problems it
is limited to those special cases that are covered by given theorems. Finally,
the NotInjNotIso strategy is, of course, only applicable to non-isomorphism
problems.
In detail, the order in which strategies are applied for proofs of simple prop-

erties is: ReduceToSpecial, EquSolve, and �nally TryAndError. For isomor-
phism proofs ReduceToSpecial is tried �rst. If it failsMulti attempts to prove
the surjectivity and homomorphy subproblems, if possible, with equational rea-
soning. If this fails it uses TryAndError and, only after these two subprob-
lems are proved, Multi �nishes the proof with the ReduceToSpecial strategy
by deducing injectivity from surjectivity. When automatically discharging non-
isomorphism proof obligations, Multi tries ReduceToSpecial as �rst strategy.
If it fails, the NotInjNotIso strategy is preferred to TryAndError.

3.5. Experiments

We needed 21 examples to construct the strategies TryAndError, EquSolve,
and ReduceToSpecial for proving simple properties of residue class structures
as presented in section 3.2. We used 15 examples to develop the extensions of
these strategies to handle isomorphism and non-isomorphism proofs and another
4 examples to build the NotInjNotIso strategy.
To show the appropriateness of the constructed strategies we constructed a

large testbed of automatically generated examples from the possible subsets of
the residue classes modulo n, where n ranges from 2 to 10, together with opera-
tions that are systematically constructed from the basic operations. Altogether,
we have classi�ed 18963 structures with respect to their algebraic properties so
far, including a large set of structures concerning the sets Z5, Z6, and Z10. The
results for all explorations as well as for each of Z5, Z6, and Z10 are given on
the left hand side of table 1. The �gures give the number of structures we have
found in each algebraic category, omitting those for which we have not found any



Meier, Pollet, Sorge: Comparing Approaches 13

representative (i.e., loops, non-Abelian monoids and groups). Note that the total
number of explored structures also includes some that were not closed, which
are not displayed as a separate category.

Simple Properties Iso-Classes
All Z5 Z6 Z10 Z5 Z6 Z10

Magmas 8567 3049 4152 743 36 7 14
Abelian magmas 244 53 73 24 26 5 6
Semi-groups 2102 161 1114 35 3 8 1
Abelian semi-groups 2100 592 1025 62 1 12 2
Quasi-groups 1891 971 738 70 9 2 10
Abelian Quasi-groups 536 207 257 11 3 2 1
Abelian Monoids 211 97 50 6 1 1 1
Abelian Groups 1001 276 419 49 1 1 1

Total 18963 5406 8128 1000 80 38 36

Table 1: Results of the experiments.

To show the validity of the techniques for isomorphism and non-isomorphism
proofs we applied our classi�cation process to the structures involving Z5, Z6, and
Z10. Thereby we only classi�ed those structures belonging to the same algebraic
category; that is, we a priori excluded the comparison, for instance, of magmas
and semi-groups. The di�erent isomorphism classes we have found so far for the
structures of each category are given on the right hand side of table 1.
For the simple properties,Multi could successfully employ ReduceToSpecial

to a sample of 20%, EquSolve for 23% of the proofs, and the remaining 57%
of the examples could only be solved by the TryAndError strategy. However,
these �gures are not as disappointing as they seem at �rst glance considering
that nearly all proofs involving the closure property of non-complete residue
class sets (i.e., sets such as Z3nf�13g) and the refutation of properties could
only be solved with the TryAndError strategy. From the necessary isomorphism
proofs 88% were done with the EquSolve strategy, the other 12% were done with
TryAndError. During the automatic classi�cation 1276 non-isomorphism proofs
were constructed. Here 18% of the proofs were done with ReduceToSpecial; the
remaining 82% with the NotInjNotIso strategy.

3.6. Discussion

From a performance point of view the strategies EquSolve and ReduceToSpecial
do not depend on the cardinality of the sets involved. For instance, EquSolve
proves the associativity of (Z5; �+) and (Z10; �+) in the same number of steps.
The performance of NotInjNotIso on the other hand depends at least indi-
rectly on the cardinality of the structures. While the size of the homomor-
phism equation system grows quadratically in the cardinality of the sets in-
volved, which complicates search, the number of needed equational reasoning
steps does not necessarily grow with the number of homomorphism equations.



Meier, Pollet, Sorge: Comparing Approaches 14

Generally, neither the modulo factor nor the cardinality of the structures have a
direct inuence on the search depth for the problem solution. For instance, the
problem (Zn; �xy x��y)6�(Zn; �xy x��y) can always be solved in two steps inde-
pendent of the modulo factor n. For a detailed description see (Meier, 2000).
The TryAndError strategy, however, depends directly on the cardinality of the
structures, since the number of cases that have to be considered is in direct cor-
respondence to the number of elements of a structure. Although for universal
variables all possible cases have to be painstakingly worked out, for existential
variables the search for the right instantiation can be signi�cantly reduced by
computing the correct hint immediately.
Although from a theoretical point of view all proofs can be done without the

hint system by crude search, in practice the combinatorial explosion makes this
infeasible. Thus, a reliable and robust hint system is crucial for the success. In-
deed we have not found a single case where the hint system (i.e., mainly the
computations of Gap and Maple) has failed or was incorrect for the proofs
of simple properties. However, the situation is somewhat di�erent for the iso-
morphism problems. The classi�cation process as well as the hint system for
the TryAndError and EquSolve strategy for isomorphism problems and for the
NotInjNotIso strategy for non-isomorphism problems depend on the quality of
Maple's solutions for the system of instantiated homomorphism equations. It
turned out that Maple sometimes does not return all possible solutions even
though it was required to do so. For instance, the two structures (Z6; �xy �26��x��y)
and (Z6; �xy �46��x��y) are isomorphic (a possible isomorphism is h(x) = �56��x).
However, when called to give the solutions for the corresponding set of instan-
tiated homomorphism equations Maple returns the mapping h(x) = �06 as sole
solution. Although this is a correct solution, it is not the only one. In partic-
ular, it is not suitable to construct an isomorphism necessary for both testing
in the classi�cation process and providing a hint to the planner. Similarly, for
non-isomorphism problems a lack of solutions can lead to a faulty hint for the
NotInjNotIso strategy.
In our experiments we failed to classify about 200 structures due to this prob-

lem. Unfortunately, we could not �nd a clear characterization of these cases in
order to work around the problem.

4. CAS vs. Model Generation

One possible solution to the problem of incomplete solutions for isomorphism
hints described in the preceding section is to exchange the CAS by a model
generator. Since all queries of the hint system are expressible as model generation
problems, we were also interested in the performance and scalability of a generic
model generator compared to a specialized CAS like Gap. For our experiments
we chose the model generator Sem (Zhang and Zhang, 1996).



Meier, Pollet, Sorge: Comparing Approaches 15

4.1. Model Generators

We employ model generation in proof planning to compute witness terms or hints
for the planner by constructing appropriate models that contain the required
information. In this scenario a model generator is applied similarly to a computer
algebra system via control rules to guide the proof planning process. Thus, we
essentially replace Gap andMaple in the hint system with the model generator
Sem (Zhang and Zhang, 1996).
For the exploration of the residue class domain model generation can be used

both to test whether a particular property is likely to hold or not to hold, and to
compute all necessary hints to guide the proof planning. For instance, Sem can
return either a unit element if one exists or a set of element pairs that suÆce to
show that no unit element exists in a given residue class structure.
The actual call to Sem consists of the multiplication table of the operation of

the residue class structure together with the problem at hand. The multiplication
table for n elements is encoded as a set of n2 equations of the form a Æ b = c.
To obtain, for example, a unit element Sem is asked to compute a model for
the equations x � e = x and e � x = x, where x is a free variable and e is an
unspeci�ed constant function for which a model is computed.
Unlike computer algebra, model generation can be applied to directly com-

pute a hint both for showing and for refuting a property. In particular in the
latter case, where the computation of the CAS simply fails and a hint has to be
explicitly computed in a post-processing step, Sem is able to directly provide
the result.
For example, the associativity property is tested with Sem by generating a

model that contains the multiplication table and additionally the equation (x �
y) � z = x � (y � z) with variables x, y and z. If there exists a model, then
associativity holds for all elements of the residue class structure. If there is no
model, then Sem is called again with the negated equation where x, y and z are
unspeci�ed constants. A model for the negated equation contains an instantiation
for x, y, z. With the standard hint system, associativity is �rst checked with
Gap. If the answer is negative, Maple is used to provide the solutions for the
associativity equation. The output of Maple has to be analysed, whether it is
a non-general solution and which elements are a possible counter example.

4.2. Experiments

We compared the performance of the proof planner's hint system using the CASs
Maple and Gap on one side and the model generator Sem on the other side in
a series of additional experiments. We tested both approaches by computing the
hints for the classi�cation of 2000 residue class structures wrt. their algebraic
property and whether two structures are isomorphic (1000 with Z6 and 1000
with Z10).
Table 2 gives a runtime comparison of our approaches. All experiments were

conducted on a Sun Sparc Ultra with four processors and 2 GB Ram using



Meier, Pollet, Sorge: Comparing Approaches 16

Maple 7 and Sem 1.7. The �gures are average values extracted during the clas-
si�cation of the structures of our testbed and include the runtime of the external
systems, communication time, and pre- and post-processing of the output. Since
the behavior of the external systems and the processing of their output depends
on the result of the query, we distinguish between positive and negative results.
We omitted the tests for the closure and divisors properties on the CAS side
since there we only use algorithms implemented in 
mega.
Although the di�erence between the average runtimes of the two approaches

is not large there are remarkable variances even within a single category when
we take the gross runtimes depending on system load, network traÆc, other pro-
cesses, etc. There it can happen that a query takes several hundred milliseconds
even when its average time is below 100 milliseconds and it becomes unpre-
dictable whether Sem or the CASs will be faster. We tried to eliminate these
e�ects from our statistics with a large testbed and three test runs.
We tested the scalability of the model generator approach performing 20 tests

for generating hints (without planning the actual proofs) for residue class struc-
tures containing up to 100 elements. Even for the most expensive hints Sem was
able to return an answer within less than 20 seconds.

Z6 CAS Z6 Sem Z10 CAS Z10 SemProperty
true false true false true false true false

Closure { { 63 68 { { 73 84
Associativity 23 455 67 141 31 430 82 163
Commutativity 37 25 68 129 21 31 79 147
Unit element 20 20 65 135 26 21 93 148
Inverses 63 60 143 200 116 225 168 227
Divisors { { 80 129 { { 108 155
Isomorphism 597 766 73 216 827 1084 103 252

Table 2: Average runtime comparison of the hint system; times are given in milliseconds.

.

4.3. Discussion

In general, both approaches are equally robust and do not outperform each
other. In fact, the approaches complement each other in the following sense: (1)
There are no appropriate commands in Maple or Gap to check for the closure
and the divisors properties. For these problems Sem is a new alternative to our
algorithms implemented in 
mega. (2) The comparison shows that Sem has
better runtimes for isomorphism properties, whereas CASs are faster for most
of the other properties. For associativity there is the interesting case that the
runtime depends on the result and it cannot be said in advance which system
should be preferred. (3) As discussed in section 3.6, Maple sometimes does not
return all possible solutions for the homomorphism equation system. Thus, the
hint system can either not construct an isomorphism mapping or, in the case of



Meier, Pollet, Sorge: Comparing Approaches 17

non-isomorphism proofs, it fails to provide a suitable hint for the NotInjNotIso
strategy. Actually, during our comparison, Maple failed to compute all solu-
tions and hence to give suitable hints for 1% of the queries in cases where the
structures were isomorphic and 20% of the queries, where the structures were
not isomorphic. In contrast, Sem never failed to provide suitable and correct
hints during our experiments. However, Sem cannot produce closed polynomial
representations of isomorphisms as needed to apply the EquSolve strategy. But
the pointwise isomorphisms provided by Sem can be passed toMaple to create
a corresponding polynomial representation (as described in section 3.3.2).
Because of these complementary e�ects between Sem and the CASs we intend

to implement a concurrent use of both. That is, all queries are send to both Sem
and the CASs which run concurrently to competitively provide answers.

5. Proof Planning vs. ATP

The successful application of proof planning to the problems of a certain domain
depends on the acquisition of mathematical knowledge of the domain and its
formalization in methods, control rules, and strategies. If suitable knowledge
is available, proof planning can solve problems that are beyond the means of
traditional ATPs based on general-purpose machine-oriented logical calculi such
as the resolution calculus (Robinson, 1965). Proof planning has been particularly
successful in areas where proofs of similar structure have to be constructed,
such as for example inductive theorem proving (Bundy, 1988). If the number of
problems of a domain is suÆciently large the acquisition of the knowledge and
its formalization can prove fruitful but is nevertheless a tedious task.
This generally poses the question of whether there are other means than proof

planning to tackle the problems of a certain domain. The problems generated
during the exploration of residue class structures are obviously in the range of
more conventional automated theorem proving since all occurring quanti�ers
range over �nite sets. To compare the results of our approach with the results
of a traditional ATP we replaced the overall proof planning approach in the
exploration scenario by the �rst order equational prover WaldMeister (Hil-
lenbrand et al., 1999). The decision to use WaldMeister was motivated by
experiments with some general �rst order logic ATPs. They showed that with-
out expert knowledge about suitable control settings for the systems and suitable
formalizations of the problems we were hardly able to solve any of our problems.
However, forWaldMeister we got help from one of its implementors in tuning
the system for our problems.

5.1. Proving Residue Class Problems with WaldMeister

We employ WaldMeister in Multi by specifying a strategy, WMonResclass,
whose sole purpose is to give a goal exclusively toWaldMeister. The strategy
can be applied to all problems occurring during the automatic exploration except



Meier, Pollet, Sorge: Comparing Approaches 18

to show that two structures are isomorphic. Problem speci�cations for Wald-

Meister consist of three parts: A general axiomatization of the residue class
structure and the operations +;�; �, a speci�c formalization of the property to
be proved, and a suitable control setting for WaldMeister, for instance, an
ordering of the used symbols. Note that the strategy WMonResclass callsWald-

Meister with two di�erent control settings depending on whether the goal to
be proved is a simple property or a non-isomorphism problem.

a0 = 0
a1 = s(a0)
equal(x; x) = true

equal(x; s(x)) = false

s(s(x))) = x

Z2 = cons(a0; cons(a1; nil))

9>>>>>>>=
>>>>>>>;

(1)
Speci�cation of Z2 as
list of two elements.

+(x; 0) = x

+(x; s(y)) = s(+(x; y))
...
�(x; 0) = 0
�(x; s(y)) = +(x; �(x; y))
...

9>>>>>>>>=
>>>>>>>>;

(2)
Speci�cation of the
basic operations +; �;�.

+(+(x; y); z) = +(x;+(y; z))
+(x; y) = +(y; x)
...
�(�(x)) = x

�(x;�(x)) = 0
...
�(�(x; y); z) = �(x; �(y; z))
�(x;+(y; z)) = +(�(x; y); �(x; z))
...

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(3)
Additional theorems
and lemmas about
the basic operations.

op(x; y) = �(+(x; s(0)); y)

o
(4)

Speci�cation of the operation
of the residue class structure.

Figure 1: Speci�cation for WaldMeister.

Figure 1 gives the general part of the input speci�cation for the example
(Z2; �xy (x�+�12)��y). The general part consists of facts that (1) model the given
residue class set as a list of distinct elements, (2) model the basic operations
+;�; �, and (3) add useful known lemmas and theorems about the basic oper-



Meier, Pollet, Sorge: Comparing Approaches 19

ations such as the ring properties��. The given operation on residue classes can
then be expressed directly by these functions (4); that is, the actual multiplica-
tion table of the structure does not need to be formalized. We experimented also
with a direct speci�cation of the multiplication table of the structures, similar to
the problem speci�cations for Sem. However, WaldMeister performed better
when the operation of the residue class structure was de�ned as composition of
basic operations. The reason is that WaldMeister needs to be provided with
suitable lemmas it can apply during its proof search and therefore the general
knowledge on the basic operations given in part (3) is crucial for success. How-
ever, if the operation is speci�ed via its multiplication tableWaldMeister fails
due to a lack of suitable lemmas.
To prove simple properties, we have to de�ne the property in question recur-

sively over the list specifying the given set. This can only be done by introducing
several auxiliary predicates. The conclusion is then an equation stating that the
simple property does or does not hold.
To show that two structures are not isomorphic we use WaldMeister to

construct an indirect proof. That is, to the speci�cation of the two structures
(RS1

n; Æ
1) and (RS2

m; Æ
2), the de�nition of two homomorphisms h : RS1

n ! RS2

m

and j : RS2

m ! RS1

n and the properties h(j(x)) = x and j(h(x)) = x are
added. The conclusion consists then of all possible equations between two distinct
elements of RS2

m, such as 0=s(0), etc. If WaldMeister succeeds to prove that
one of these equations holds then we have a contradiction to the assumption that
the two structures are isomorphic. We currently have no suitable formalization to
prove that two structures are isomorphic. One possibility would be to formalize
a list of all possible functions (de�ned as pointwise functions) such that the
isomorphism problem can be formalized via a recursion about this list. However,
this is a very long-winded approach which we did not realize so far.

5.2. Experiments

To compare the combined proof planning/CAS approach with the application
of ATP we used WaldMeister to explore structures with the sets Z5 and Z10

which we already classi�ed wrt. their simple algebraic properties in our experi-
ments reported in section 3.5. Moreover, we tackled non-isomorphism problems
with the sets Z5 and Z10. We omitted isomorphism problems since we currently
do not have a sensible approach to tackle this kind of problems withWaldMeis-

ter. The results of our experiments are summarized in Table 3. All experiments
were done on a Sun Sparc Ultra with four processors and 2 GB Ram; the maxi-
mum time bound for WaldMeister was 1500 seconds.
Our experiments show that WaldMeister is generally able to solve all

considered problems in the residue class domain. However, it turned out that
��In the speci�cations for WaldMeister � is a unary function. Thus our binary minus

operation is translated as +(x;�(y)).



Meier, Pollet, Sorge: Comparing Approaches 20

Z5 Z10

Explorations wrt. to simple prop. 1100 316
Failed Explorations 49 247
Single simple property problems 4694 1260
Failed simple properties problems 53 314
Non-isomorphism problems 2400 400
Failed non-isomorphism problems 167 65

Table 3: Results of applying WaldMeister to problems of Z5 and Z10.

on a large testbed WaldMeister is less robust than our proof planning ap-
proach. Indeed, WaldMeister failed on 4% of the Z5 and 78% of the Z10

explorations. The most brittle categories are the non-associative problems for
Z5, where WaldMeister failed on 49 of 888 problems, and divisors and non-
divisors problems for Z10, whereWaldMeister failed on 39 of 39 problems and
197 of 223 problems, respectively. Note that this does not necessarily mean that
WaldMeister might not be able to prove these problems at all if it were given
a more specialized and �ne tuned control setting. However, in our experiments
we use exactly two di�erent control settings, one suitable for all simple prop-
erties and one for non-isomorphism problems. According to our experiments,
the overall performance of WaldMeister (i.e., whether it succeeds or fails on
a problem) depends on the cardinality of the set involved: Higher cardinality
implies a higher likelihood of failure.

5.3. Discussion

WaldMeister has a clear advantage to the proof planning approach wrt. run-
time behavior. When it succeeds, it succeeds very fast independently of the
cardinality of the residue class structure (30% of all proofs were produced in
less than 1 second, 70% of all proofs were produced in less than 10). The run-
time performance of the proof planning approach depends on which strategy
can be applied successfully. Problems solved with the ReduceToSpecial or the
EquSolve strategy usually take about 10 to 20 seconds independently of the
cardinality of the given set. If TryAndError has to be applied it can take con-
siderably longer, depending on the cardinality of the structures.
In our context a disadvantage of WaldMeister is, however, its output for-

mat. Although,WaldMeister has a proof presentation tool that tries to struc-
ture the found proof by lemmas, in our experiments this tool failed to successfully
present many found proofs (e.g., on almost all associativity problems). And even
proofs displayed by the presentation tool are relatively hard to read: On the one
hand the proofs are very long, usually between 150 and 300 equational reason-
ing steps, structured with 10 to 30 lemmas. On the other hand the used lemmas
are rather counterintuitive for humans. In contrast, the proof planning approach
can produce very short proof plans when ReduceToSpecial (� 10 steps) or
EquSolve (� 20 steps) are applied. Although proof plans with TryAndError can
be very long, these proofs are structured in a clear way by the case splits. For



Meier, Pollet, Sorge: Comparing Approaches 21

instance, a divisor proof for a structure with cardinality 10 consist of about 3000
nodes comprised of 100 clearly separate cases each consisting of about 30 steps.
It is a common criticism of proof planning to depend on specially prepared and

�ne-tuned domain knowledge. In contrast, ATPs such as WaldMeister seem
not to depend on particular knowledge since they are based on general-purpose
machine-oriented calculi. However, our experience with WaldMeister is that
its application to our domain was successful only with a considerable amount of
very speci�c knowledge. TheWaldMeister strategy WMonResclass comprises,
for instance, knowledge on how to suitably represent residue class structures for
WaldMeister, knowledge on which theorems and lemmas for the basic opera-
tions should be added, and knowledge on which particular ordering of the used
symbols to choose. This knowledge was absolutely crucial for a successful applica-
tion of WaldMeister in our domain. Hence instead of encoding mathematical
knowledge for the residue class domain, we had to encode knowledge speci�c
to the theorem prover employed, which we could only do with the help of an
expert. Likewise we failed to successfully apply the �rst-order resolution prover
Otter (McCune, 1994b) in our domain since we lacked the expert knowledge
to �nd a suitable representation for our problems.

6. Related Work and Conclusions

We have presented an experiment in exploring properties of residue classes over
the integers with the combined e�ort of the multi-strategy proof plannerMulti

and the two CASs Maple and Gap. In our experiments we classify residue
class sets over the integers together with binary operations in terms of what al-
gebraic structure they form and then we divide structures of the same algebraic
category into isomorphism classes. Arising proof obligations are discharged by
Multi with several strategies that realize di�erent proof techniques of the prob-
lem domain. The proof planning in our problem domain bene�ts considerably
from the possibilities Multi provides. Using Multi we were not only able to
encode several di�erent proof techniques in a conceptually clear way into di�er-
ent strategies, but could also combine and interleave these strategies exibly. We
employed the CASs to guide and simplify both the classi�cation and the proof
planning process. We have tested the validity of our techniques with a large
number of experiments. It turned out that the implemented machinery is not
only robust but that the elaborate strategies are successful on a large number of
examples. A comparison showed that our approach can compete with alterna-
tive techniques. In particular, the comparison withWaldMeister showed that
although most problems can be successfully tackled with a conventional ATP,
our combined proof planning/computer algebra approach was more robust in a
large case study. Moreover, the resulting proofs are more understandable to a
human user. The experiments with Sem indicated that the used CASs could at
least partially be replaced by a model generator. It de�nitely proved that model
generation and computer algebra ideally complement each other in our problem



Meier, Pollet, Sorge: Comparing Approaches 22

domain. This suggests a concurrent use of both systems in order to enhance the
reliability of the hint system guiding the proof planner.
There are various accounts on experiments of combining computer algebra and

theorem proving in the literature (see (Kapur and Wang, 1998) for just a few).
However, they generally deal with the technical and architectural aspects of those
integrations as well as with correctness issues and not with the application of the
combined systems to a speci�c problem domain. A possibly fruitful cooperation
between the deduction system NuPRL and the computer algebra system Weyl
in the domain of abstract algebra is sketched by (Jackson, 1994). Our article
in contrast, presents the application of an already existing combination of proof
planning and computer algebra to a speci�c problem domain. We thereby exploit
work previously done in 
mega (Kerber et al., 1998; Sorge, 2000).
More concrete work in exploration in �nite algebra is reported by Fujita et al.

(1993); McCune (1994a); Slaney et al. (1995) where model generation techniques
are used to tackle quasi-group existence problems. In particular, some open
problems in quasi-group theory were solved. The motivation for all this work
is roughly to specify certain properties of an algebra and then to try to auto-
matically construct a structure that satis�es the required properties. Thus, the
constructed algebra might actually be a new discovery. Our work has the oppo-
site motivation in the sense that we start out with given structures and classify
them with respect to their algebraic properties and whether they are isomorphic.
Likewise, our automatic exploration processes depend on sets of pre-constructed
residue class sets and operations. In addition both classi�cation and exploration
is currently not designed to intentionally discover new algebraic structures.

Acknowledgments We would like to thank Thomas Hillenbrandt with his help
on the use of WaldMeister and Hans deNeville for stimulating discussions.

References

Benzm�uller, C., Cheikhrouhou, L., Fehrer, D., Fiedler, A., Huang, X., Kerber, M.,
Kohlhase, M., Konrad, K., Melis, E., Meier, A., Schaarschmidt, W., Siekmann, J.,
and Sorge, V. (1997). 
Mega: Towards a Mathematical Assistant. In Proceedings

of CADE{14 , volume 1249 of LNAI . Springer Verlag.
Bundy, A. (1988). The Use of Explicit Plans to Guide Inductive Proofs. In Proceedings
of CADE{9 , volume 310 of LNCS . Springer Verlag.

Fujita, M., Slaney, J., and Bennett, F. (1993). Automatic generation of some results
in �nite algebra. In Proceedings of IJCAI'93 . Morgan Kaufmann.

GAP (1998). GAP { Groups, Algorithms, and Programming, Version 4 . The
GAP Group. http://www-gap.dcs.st-and.ac.uk/~gap.

Gomes, C., Selman, B., and Kautz, H. (1998). Boosting combinatorial search through
randomization. In Proceedings of AAAI-98 . AAAI Press.

Hillenbrand, T., Jaeger, A., and L�ochner, B. (1999). System description: Waldmeister :
Improvements in performance and ease of use. In Proceedings of CADE{16 , volume
1632 of LNAI . Springer Verlag.



Meier, Pollet, Sorge: Comparing Approaches 23

Jackson, P. (1994). Exploring Abstract Algebra in Constructive Type Theory. In
Proceedings of CADE{12 , volume 814 of LNCS . Springer Verlag.

Kapur, D. and Wang, D., editors (1998). J. of Automated Reasoning| Special on the

Integration of Deduction and Symbolic Computation Systems, volume 21(3). Kluwer
Academic Publisher.

Kerber, M., Kohlhase, M., and Sorge, V. (1998). Integrating Computer Algebra Into
Proof Planning. J. of Automated Reasoning , 21(3), 327{355.

McCune, W. (1994a). A Davis-Putnam program and its application to �nite �rst-order
model search: Quasigroup existence problems. Technical Memorandum ANL/MCS-
TM-194, Argonne National Laboratory, USA.

McCune, W. W. (1994b). Otter 3.0 reference manual and guide. Technical Report
ANL-94-6, Argonne National Laboratory, Argonne, Illinois 60439, USA.

Meier, A. (2000). Randomization and heavy-tailed behavior in proof planning. Seki
Report SR-00-03, Fachbereich Informatik, Universit�at des Saarlandes, Saarbr�ucken,
Germany.

Meier, A. and Sorge, V. (2001). Exploring Properties of Residue Classes. In Proceedings
of the Calculemus Symposium 2000 . AK Peters.

Meier, A., Pollet, M., and Sorge, V. (2000). Exploring the domain of residue classes.
Seki Report SR-00-04, Fachbereich Informatik, Universit�at des Saarlandes, Saar-
br�ucken, Germany.

Meier, A., Pollet, M., and Sorge, V. (2001). Classifying Isomorphic Residue Classes.
In Proceedings of EuroCAST 2001 , volume 2178 of LNCS . Springer Verlag.

Melis, E. and Meier, A. (2000). Proof planning with multiple strategies. In Proceed-

ings of the First International Conference on Computational Logic, volume 1861 of
LNAI . Springer Verlag.

Melis, E. and Siekmann, J. (1999). Knowledge-based proof planning. Arti�cial Intel-
ligence.

Redfern, D. (1999). The Maple Handbook: Maple V Release 5 . Springer Verlag.
Robinson, J. (1965). A machine-oriented logic based on the resolution principle.
JACM , 12.

Slaney, J., Fujita, M., and Stickel, M. (1995). Automated reasoning and exhaustive
search: Quasigroup existence problems. Computers and Mathematics with Applica-

tions, 29, 115{132.
Sorge, V. (2000). Non-Trivial Computations in Proof Planning. In Frontiers of combin-
ing systems: Third International Workshop, FroCoS 2000 , volume 1794 of LNCS .
Springer Verlag.

Zhang, J. and Zhang, H. (1996). Generating models by SEM. In Proceedings of

CADE{13 , volume 1104 of LNAI . Springer Verlag.


